Русский

Harvard University and University of Vienna invented tunable laser chips

63
2025-07-16 14:42:00
Посмотреть перевод

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.
Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safety inspections of gas pipelines. Yet laser technology faces many tradeoffs – for example, lasers that emit across a wide range of wavelengths sacrifice the accuracy of each wavelength. They can also depend on complicated and expensive designs because they commonly require moving parts.

Artist’s illustration of the new tunable ring laser.

The Harvard and Vienna developers new device could “one day replace many types of tunable lasers in a smaller, more cost-effective package.”

The associated research has been published in Optica. It was co-led by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS, and Prof. Benedikt Schwarz at TU Wien.

‘More commercially relevant wavelengths’

The researchers have initially demonstrated a laser that emits light in the mid-infrared wavelength range because that is where quantum cascade lasers, upon which their architecture is based, typically emit. “The versatility of this new platform means that similar lasers can be fabricated at more commercially relevant wavelengths, such as for telecommunications applications, for medical diagnostics, or for any laser that emits in the visible spectrum of light,” said Capasso, who co-invented the quantum cascade laser in 1994.

The new laser consists of multiple tiny ring-shaped lasers, each a slightly different size, and all connected to the same waveguide. Each ring emits light of a different wavelength, and by adjusting electric current input, the laser can smoothly tune between different wavelengths. The clever and compact design ensures the laser emits only one wavelength at a time, remains stable even in harsh environments, and can be easily scaled. The rings function either one at a time or all together to make a stronger beam.

“By adjusting the size of the ring, we can effectively target any line we want, and any lasing frequency we want,” said co-lead author Theodore Letsou, an MIT graduate student and research fellow in Capasso’s lab at Harvard. “All the light from every single laser gets coupled through the same waveguide and is formed into the same beam. This is quite powerful, because we can extend the tuning range of typical semiconductor lasers, and we can target individual wavelengths using a different ring radius.”

“What’s really nice about our laser is the simplicity of fabrication,” added co-lead author Johannes Fuchsberger, a graduate student at TU Wien, where the team fabricated the devices using the cleanroom facilities permanently provided by the school’s Center for Micro and Nanostructures. “We have no mechanically movable parts and an easy fabrication scheme that results in a small footprint.”

The new ring laser could possibly replace current technologies for different types of tunable semiconductor lasers that each have strengths and drawbacks depending on the application. For example, distributed feedback lasers make smooth and accurate beams and are therefore used in telecommunications fiber to send optical signals long distances, but their tuning range is narrow.

External cavity lasers, on the other hand, have broader tuning ranges but more complex designs and moving parts, which makes their laser lines tend to skip around. These are commonly used in gas sensors that test for leaks in pipelines, because they can detect gases like methane and carbon dioxide which absorb light at distinct wavelengths.

Source: optics.org

Связанные рекомендации
  • Marvin Panaco launches the Mastersizer 3000 for laser diffraction particle size determination+

    Marvin Panaco, a subsidiary of Spectris plc located in Egham, Surrey, UK, announced the launch of its new laser diffraction particle size measurement instrument Mastersizer 3000+. Mastersizer 3000+utilizes integrated artificial intelligence and data science driven software solutions, providing method development support, data quality feedback, instrument monitoring, and troubleshooting recommendat...

    2024-03-22
    Посмотреть перевод
  • Laser manufacturer DIT signs KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. After the announcement, DIT's stock price rose for five consecutive days, entering the 16000 Korean won range. Then on the 22nd, it rose 2580 Korean won from the previous day'...

    02-15
    Посмотреть перевод
  • Laser company nLIGHT announces financial results for the second quarter of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, announced its financial performance for the second quarter of 2024.According to the financial report, nLIGHT achieved a revenue of $50.5 million in the second quarter of 2024, a year-on-year decrease of 5.2% and an increase of 13% compared to the first quarter; The GAAP net loss for the second quarter was $11.7 million...

    2024-08-20
    Посмотреть перевод
  • Opton Laser commercializes ultra-high contrast third-order autocorrelators

    Recently, Opton Laser International, a supplier specializing in photonics, is currently distributing manufacturer UltraFast Innovations (UFI)'s ultra-high contrast third-order autocorrelator Tundra++. The new generation Tundra aims to characterize the temporal intensity distribution and quality of laser pulses with particularly high sensitivity.This is to avoid the harmful effects caused by the hi...

    2023-08-31
    Посмотреть перевод
  • Improved spectrometer color filter array for software calibration without the need for laser

    Hackaday will launch cool projects that may stimulate others to expand and enhance it, and even move in a completely new direction. This is the way the most advanced technology continues to evolve. This DIY spectrometer project is a great example of this spirit. It comes from Michael Prathofer, who was inspired by Les Wright's PySpectrometer, a simple device pieced together by a pocket spectrom...

    2024-05-28
    Посмотреть перевод