Русский

Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

765
2024-06-03 14:48:38
Посмотреть перевод

Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.

The developed 4-amino-TEMPO derivatives have the characteristic of simultaneously improving the performance of fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs).

Traditional materials are difficult to synthesize and produce on a large scale, and the reproducibility of devices using them is poor. The 4-amino-TEMPO derivative developed by the research team not only has a simple synthesis process and can be synthesized in large quantities, but also enhances the performance of FDSSCs and FOLEDs, improving the performance of these two electronic devices by more than 20%.

The research team, including Professor Chul Jin Ahn from Changyuan National University, as well as Dr. Jae Ho Kim and Dr. Myung kuan Song from the Energy and Electronic Materials Department of the Department of Surface and Nanomaterials, designed and synthesized a material with photocatalytic performance to improve the efficiency of FDSSC.

Synthetic materials exhibit high stability in both air and moisture, making them suitable for producing high-performance FDSSC and FOLED. In addition, it has been confirmed that it has excellent washing performance and resistance to mechanical impact.

4-Amino-TEMPO derivatives are applied in various electronic device fields, including solid electrolytes in lithium batteries, catalysts, solar cells, and organic light-emitting diodes. The uniqueness of this technology lies in its ability to produce on a large scale through simple processes, coupled with its cost-effectiveness. In addition, it provides versatility rather than a single function, making it widely applicable to various electronic applications.

These derivatives can be mass-produced at low cost, with less than 1 million Korean won per 100 grams. Utilizing this technology for local and large-scale production may bring unprecedented economic benefits to electronic equipment companies.

Dr. Song Mingkuan, the chief researcher of this study, said, "By utilizing multifunctional materials, we can improve the performance and reliability of electronic devices. We expect to apply them in different fields, including energy production and storage materials, as well as sensor materials."

The research team is continuing further research to use 4-amino-TEMPO derivatives for organic solar cells, perovskite solar cells, and organic light-emitting diodes, with the goal of mass production within a few years.

Source: Laser Net

Связанные рекомендации
  • Jena Helmholtz Institute Using Air Deflection Laser Beam

    A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.Technology and PrinciplesThis innovative technology utilizes so...

    2023-10-07
    Посмотреть перевод
  • Shanghai Optics and Machinery Institute has made progress in near-field state analysis of high-power laser devices based on convolutional neural networks

    Recently, the research team of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics identified and analyzed the abnormal near-field output of the SG - Ⅱ upgrade device by using the spatial domain computing method and the deep learning model with attention mechanism in response to the requirements of real-time and effective...

    2024-04-25
    Посмотреть перевод
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    Посмотреть перевод
  • Strategy Networks Utilizes Ekinops for Optical Network Upgrade

    Strata Networks is one of the fastest growing communication cooperatives in Utah, and has chosen Ekinops360 from Ekinops as the platform to upgrade its optical transmission network.Strata is headquartered in Roosevelt, Utah, with a network spanning the Uintah Basin, the Vasatch Front, and Denver. The cooperative continues to expand and improve its fiber optic footprint to differentiate its telepho...

    2023-11-21
    Посмотреть перевод
  • A German research team has developed a new type of perovskite stacked battery

    According to relevant media reports, a research team from the Helmholtz Center in Berlin, Germany, and Humboldt University has jointly developed a new type of perovskite stacked battery. This battery has broken the world record for similar batteries with a photoelectric conversion efficiency of 24.6%. In the solar cell family, in addition to silicon-based solar cells, there are also thin-film so...

    02-08
    Посмотреть перевод