Русский

Improved spectrometer color filter array for software calibration without the need for laser

914
2024-05-28 16:04:55
Посмотреть перевод

Hackaday will launch cool projects that may stimulate others to expand and enhance it, and even move in a completely new direction. This is the way the most advanced technology continues to evolve.

 


This DIY spectrometer project is a great example of this spirit. It comes from Michael Prathofer, who was inspired by Les Wright's PySpectrometer, a simple device pieced together by a pocket spectrometer and PiCam. As we pointed out at the time, [Les] added many complex instruments to the software, but this does not mean there is no room for improvement.

Michael's goal is to make his spectrometer easier to build and improve the calibration process and overall accuracy. To help solve the former, he performed software calibration on the color filter array on his Fuji X-T2. The advantage of doing so is that it does not require high-power lasers and precision micro locators to ablate CFA, and avoids the possibility of damaging expensive cameras. For the latter, Michael delved into the theories behind spectroscopy and camera optics to develop a process that associates the intensity of light in the spectrum with a specific wavelength at that location. He also conducted some machine learning during this process and trained a network to optimize the response function.

Source: Laser Net

Связанные рекомендации
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    Посмотреть перевод
  • HGTECH Laser's New Product Debuts at the 2025 Munich Shanghai Light Expo

    New Product for Wafer Testing Probe Card Manufacturing Equipment Project This project adopts vision guided laser precision cutting to separate the probe from the crystal disk, and then generate a product mapping image for use in the next process. When picking up the probe, multi-point reference surface fitting technology is used to achieve non-contact probe suction and avoid force deformation. A...

    03-07
    Посмотреть перевод
  • High performance optoelectronic device developer "Micro Source Photon" completes B+round financing

    Recently, Weiyuan Photon (Shenzhen) Technology Co., Ltd. (hereinafter referred to as "Weiyuan Photon") announced the completion of a B+round of financing, with investors including Yicun Capital, Chenfeng Capital, and Beijing Guoqian Investment. The specific amount has not been disclosed. According to its official website, MicroSource Photonics was founded in November 2018, with the main members...

    2024-07-23
    Посмотреть перевод
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    Посмотреть перевод
  • The improvement of additive manufacturing through artificial intelligence, machine learning, and deep learning

    Additive manufacturing (AM) has made it possible to manufacture complex personalized items with minimal material waste, leading to significant changes in the manufacturing industry. However, optimizing and improving additive manufacturing processes remains challenging due to the complexity of design, material selection, and process parameters. This review explores the integration of artificial int...

    02-24
    Посмотреть перевод