Русский

Fulu and Longview begin design work on laser melting devices

152
2024-03-13 10:47:50
Посмотреть перевод

Longview Fusion Energy Systems and Fluor have taken another step towards commercialization of laser fusion power plants.
According to the memorandum of understanding signed by the two companies, Fulu will design the factory for Longview Fusion Energy Systems. The two companies collaborated and signed a memorandum of understanding in 2023 to leverage Fulu's experience in developing and constructing large and complex facilities. Fulu will provide preliminary design and engineering to support the development of the Longview nuclear fusion power plant.

According to Longview, their laser fusion power plant has a capacity between 1000 and 1600 megawatts. They can meet the needs of small cities or provide process heat or electricity to drive the industrial production of materials required for operational necessities such as steel, fertilizers, and hydrogen fuel.

Longview stated that it does not require the construction of physical demonstration facilities and can focus on designing and building the world's first laser fusion energy plant with its partner Fluor.

Valerie Roberts, Chief Operating Officer and former NIF Construction/Project Manager at Longview, said, "We are building upon the success of NIF, but the Longview factory will use today's more efficient and powerful lasers and utilize additive manufacturing and optimization through artificial intelligence.".

The breakthrough in fusion energy gain at the Lawrence Livermore National Laboratory's national ignition facility has enabled the planning of a laser fusion factory to be realized.

"In the past 15 months, the energy gain of laser fusion has been proven multiple times, and the scientific community has verified these successes," said Edward Moses, CEO of Longview and former director of NIF. "It's time to focus on providing this new carbon free, safe, and abundant energy to the whole country as soon as possible."

According to Lawrence Livermore National Laboratory, in the NIF ignition experiment, a small capsule containing two types of hydrogen gas was suspended in a cylindrical X-ray "oven" called Hohlraum.

NIF's powerful laser heats Hohlraum to temperatures exceeding 3 million degrees Celsius, causing X-rays to heat and blow off the surface of the target capsule. This can lead to an implosion similar to a rocket, compressing and heating the fuel to extreme temperatures and densities until hydrogen atoms fuse and release energy.

In December 2022, the national ignition facility achieved fusion ignition, which was the first fusion ignition to generate energy greater than input energy.

Source: Laser Net

Связанные рекомендации
  • The UK team collaborated to evaluate epitaxial materials for surface-coupled lasers

    Sivers Photonics, a leading UK-based supplier of optical fiber communications and III-V semiconductor Photonics devices, has announced that it has received an initial order from UK-based laser developer Vector Photonics to evaluate epitaxial materials for a new next-generation surface-coupled laser project.The order, which includes laser manufacturing and life testing, will be the first time the t...

    2023-09-11
    Посмотреть перевод
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    Посмотреть перевод
  • Research Progress in High Efficiency Supercontinuum Spectra in Specific Wavebands Made by Shanghai Optics and Machinery High Power Laser Unit Technology Laboratory

    Recently, the High Power Laser Unit Technology Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in research on high efficiency supercontinuum in specific bands. The relevant research results were published in the Journal of Lightwave Technology under the title of "Strong Anti Stokes and flat supercontinuum in specified band based on non ...

    2023-10-17
    Посмотреть перевод
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Посмотреть перевод
  • Overview: High throughput preparation of alloy composition design in additive manufacturing

    Researchers from the New Materials Technology Research Institute of Beijing University of Science and Technology and the Beijing Modern Transportation Metal Materials and Processing Laboratory reported a review of high-throughput preparation of alloy composition design in additive manufacturing. The relevant research is titled "High throughput preparation for alloy composition design in additive m...

    2024-07-08
    Посмотреть перевод