Русский

Breakthrough development of terahertz quantum cascade lasers

467
2024-01-04 14:00:18
Посмотреть перевод

With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.

The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is specifically aimed at addressing the long-term challenges of reflectivity design and broadband narrow beam transmission in terahertz QCL. The outstanding feature of this external coupler is its ability to fine tune the mirror reflectivity of the waveguide. This is achieved by using efficient reverse design algorithms to shape the end face.

The terahertz laser radiation generated by the system is combined with broadband patch array antennas. The combination of these components leads to the convenience of surface emission. The entire system, including all its components, has been optimized to support octave frequency crossing in the range of 2-4 THz.

These advances have been put into practice through demonstrations of broadband surface emitting terahertz quantum cascade laser frequency combs. This special laser frequency comb has already demonstrated impressive performance indicators. It can output a power of 13 milliwatts and has an optical bandwidth of over 800 gigahertz and a single lobe far-field mode. It still maintains a beam divergence of less than 20 degrees in both horizontal and vertical dimensions.

In addition, this work plays a crucial role in the empirical observation of terahertz waves generated in a cascaded manner under non collinear phase matching conditions in terahertz parameter generators. Researchers effectively induce cascades using high-power seed beams to detect new high-order terahertz waves near the end face.

This development is a major step forward in the fields of terahertz wave sources, parameter detection, and amplification. It not only enhances the output power of terahertz sources, but also provides a way for theoretical exploration of parameterized TH wave generation.

This breakthrough represents significant progress in the field of laser technology and may pave the way for new possibilities for terahertz applications. It reflects the intricate interaction between technology and humanity, further blurring boundaries and expanding our understanding of possibilities.

Source: Laser Net

Связанные рекомендации
  • What are the "unique secrets" of each family in terms of breaking the game and high reaction materials?

    Laser is considered a sharp sword that cuts iron like mud, but even sharper swords can have tricky moments. For example, in certain scenarios, there are materials with higher reflectivity, such as silver, copper, etc., known as "high reflection materials". High reflective materials have a low absorption rate for lasers, making them difficult to process and potentially causing equipment failure or ...

    2023-11-06
    Посмотреть перевод
  • Hanbit Laser Layout in Southeast Asia's Mid to Low End Market

    Hanbit Laser, a South Korean laser equipment manufacturer, has recently completed an important step in its strategic layout for the Southeast Asian market. Recently, the company officially opened a laser application center in Hanoi, Vietnam, and entered the local mid to low price equipment market by integrating laser technology and automation solutions. This is a substantial progress in implementi...

    02-26
    Посмотреть перевод
  • Ultra wideband pulse compression grating for single cycle Ava laser implemented by Shanghai Institute of Optics and Mechanics

    Recently, Shao Jianda, a researcher of Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Jin Yunxia, a researcher team, and Li Chaoyang, a researcher of Zhangjiang Laboratory, have made breakthroughs in the field of ultra wideband pulse compression gratings.The research team has successfully developed a ultra 400 nm broadband gold grating for single cycle pulse com...

    2023-10-01
    Посмотреть перевод
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    Посмотреть перевод
  • Significant progress has been made in the research on the detection of microwave electric fields in the Rydberg area of Shanghai Institute of Optics and Technology

    Recently, the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, and the East China Research Team of the Key Laboratory of Quantum Optics, Chinese Academy of Sciences, together with the research team of Professor Chen Liqing of East China Normal University, demonstrated a Rydberg microwave sensor with high sens...

    2024-05-08
    Посмотреть перевод