Русский

The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

208
2024-03-06 14:34:00
Посмотреть перевод

background
Dr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee intermediates. In order to complete relevant testing and experiments, he not only needs to conduct research in the laboratory, but also needs to conduct field measurements and numerical simulations.

Figure 1: Absorption spectroscopy experimental equipment connected to the FERGIE system
challenge
Dr. Stone has conducted extensive research on the kinetics of the Krich intermediate (CH2OO) in the laboratory in the past. By using laser induced fluorescence spectroscopy to monitor the reaction products of HCHO, his work for the first time directly measured the CH2O reaction kinetics with pressure as a parameter (Stone et al., 2014). His work also indicates that under atmospheric conditions with the presence of oxygen, the photolysis of CH2I2 can lead to the production of a large amount of CH2OO (Stone et al., 2013). This conclusion has had a significant impact on understanding the oxidation process in coastal iodine rich areas.

Since then, Dr. Stone's research team has been dedicated to developing an infrared absorption experiment based on Quantum Cascade Laser (QCL) to directly monitor the amount of Kriging intermediates and SO3 generated during the reaction between Kriging intermediates and SO2 under atmospheric conditions. These experiments can evaluate the impact of sulfuric acid and sulfate aerosols produced by Kriging chemical processes on the atmosphere, and further explore their impact on air quality and climate change.

Dr. Daniel Stone: "Once FERGIE was integrated into the previous experimental setup, I was able to freely determine the triggering factors and obtain relevant time-dependent data within one measurement day."

Solution
Dr. Stone designed a clever experiment by first using high-power laser pulses to perform flash photolysis on gas mixtures, and then using the FERGIE system (predecessor of Isoplane81) to measure the instantaneous absorption of the gas mixture after photolysis. By connecting the fiber optic cable to the existing fiber optic port of FERGIE in the experiment, the trigger input of FERGIE can be synchronously collected with the external delay generator.

By utilizing FERGIE's spectral dynamics mode (with a window height of 50 rows), the time scale of each spectrum can be shortened to 290 microseconds. This reduces the time scale of the experiment by 5-6 times, expanding the spectral absorption research that could only be conducted on the millisecond scale to the sub millisecond scale. If the experiment is repeated 100 times, the sensitivity will also be improved.

Figure 2: FERGIE spectrometer product diagram

Source: Sohu

Связанные рекомендации
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    Посмотреть перевод
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    Посмотреть перевод
  • Transforming solid-state single photon sources using multifunctional metalenses

    Quantum photonics is one of the important research directions in the quantum field, which utilizes the unique properties of light at the quantum level. The core of this field is the deterministic single photon source, which sequentially emits individual photons through spontaneous emission and is the cornerstone of quantum communication, computing, and secure encryption. However, under environment...

    2024-02-26
    Посмотреть перевод
  • Laser giant nLIGHT's preliminary performance forecast for the fourth quarter of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, released its preliminary performance forecast for the fourth quarter of 2024.According to disclosed information, nLIGHT expects its revenue for the fourth quarter of 2024 to be between $46 million and $48 million, lower than the estimated range of $49 million to $54 million when it released its third quarter results on...

    01-16
    Посмотреть перевод
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    Посмотреть перевод