Русский

Aerosol jet printing can completely change the manufacturing of microfluidic devices

460
2024-02-02 18:12:01
Посмотреть перевод

Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.

A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various materials, greatly reducing development time.

In a study published in Microsystems and Nanoengineering, researchers from Duke University and Virginia Tech were the first to integrate aerosol jet printing technology into the manufacturing of SAW microfluidic devices. This progress provides a faster, more universal, and cleanroom free method for developing chip laboratory applications, completely changing the field from biology to medicine.

In this groundbreaking study, the team utilized aerosol jet printing to manufacture SAW microfluidic devices. This method contrasts sharply with traditional and cumbersome cleanroom processes.

It involves depositing various conductive materials onto substrates to form interdigital transducers, which is crucial for generating SAW to manipulate fluids and particles at the microscale.

It is worth noting that this method reduces the manufacturing time of each device from approximately 40 hours to approximately 5 minutes. The team thoroughly analyzed the acoustic performance of these printing equipment using a laser Doppler vibrometer and compared it with the equipment manufactured in the cleanroom.

The results demonstrate enormous potential, with printing equipment exhibiting similar or acceptable performance levels in terms of resonant frequency and displacement field. This study represents a significant advancement in the manufacturing of microfluidic devices, providing a faster, more adaptable, and more efficient alternative to traditional methods.

Dr. Tian Zhenhua, co-author of the study, said, "This is not just a step forward; it is a leap towards the future of microfluidic device manufacturing. Our method not only simplifies the process, but also opens up new possibilities for device customization and rapid prototyping design.".

The impact of the new method is enormous, as it provides a more convenient, faster, and cost-effective way to produce microfluidic equipment. It has the potential to accelerate research and development in numerous fields, enabling faster diagnosis, improved drug delivery systems, and enhanced biochemical analysis.

In addition, the versatility of this technology indicates its adaptability to various materials and substrates, and it is expected to be widely applied in various disciplines.

Source: Laser Net

Связанные рекомендации
  • The world's first scalable optical quantum computer prototype has been launched

    Canada's Xanadu Quantum Technologies has developed the world's first scalable optical quantum computer prototype. The company published an article in the latest issue of Nature detailing its design and construction process, and demonstrating how the prototype can be flexibly scaled up to the required scale. This breakthrough lays an important foundation for the development of large-scale quantum c...

    02-12
    Посмотреть перевод
  • Monport enhances K40 laser cutting machine through air assisted technology

    Monport Laser has launched its latest breakthrough innovative product, the Monport 40W Pro CO2 laser engraving machine, with air assistance. This cutting-edge machine has set a new standard for precision carving, providing excellent performance and a series of upgraded functions. The Monport 40W Pro surpasses its predecessor, the Monport 40W Laser, in all aspects, making it a game-changing solutio...

    2023-10-11
    Посмотреть перевод
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    Посмотреть перевод
  • Coherent Unifies Ultrafast Laser Business at the Glasgow Center of Excellence

    Recently, Coherent, an American laser system solution provider, announced that all of the company's ultra fast laser business, including the manufacturing of all picosecond and femtosecond lasers, will be unified in one place: the Ultra Fast Center of Excellence in Glasgow, Scotland.Previously, Coherent's Ultra Fast Center of Excellence located in Glasgow was already a state-of-the-art mass produc...

    2023-09-22
    Посмотреть перевод
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    Посмотреть перевод