Русский

Topological high-order harmonic spectroscopy in Communications Physics

242
2024-01-15 17:07:40
Посмотреть перевод

It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The relevant paper was published in Communications Physics under the title of "Topological high molecular spectroscopy copy".

High order harmonic generation (HHG) is an extreme nonlinear effect that occurs when a strong field laser is focused on a gas medium, resulting in hundreds of orders of high-energy harmonic photons.

In the paper, researchers demonstrated the high-order harmonic spectroscopy scheme generated by the interaction between structured driving beams and crystal solid targets. Unlike isotropic gas targets, researchers have demonstrated the coupling of crystal symmetry with the driving beam topology during high-order harmonic generation (HHG) processes. This coupling feature is encoded into a complex spatial structure that emits harmonics. In particular, researchers have revealed this interwoven photon conversion by studying the HHG of monolayer graphene driven by LPVB.

Figure 1: Overview of topological high-order harmonic spectra in graphene and argon gas.

Figure 2: Far field harmonic emission curves of circularly polarized components on the left (LCP) and right (RCP) sides.

Figure 3: Comparison of orbital angular momentum (OAM) carried by high-order harmonics emitted from anisotropic and isotropic targets.

Researchers have found that, unlike isotropic cases, the harmonics generated by crystal targets can break the conservation of the driving topology based on their compositional symmetry. Researchers have provided an analytical derivation that can (1) predict the topology of high-order harmonic beams from the anisotropic symmetry of the target, and (2) retrieve the anisotropic response of the target from the topology of high-order harmonic beams. Therefore, high-order harmonic spectroscopy based on topological structure can extract spatial resolution information of target nonlinear response, which cannot be obtained by standard spectroscopy techniques.

Figure 4: Near field harmonic emission profiles obtained in anisotropic and isotropic targets.

Figure 5: Retrieve nonlinear response from topological harmonic characteristics.

Although researchers have demonstrated the interaction between the topological structure of vector beam drivers and target symmetry in two-dimensional materials such as graphene, they believe that their research results open up a universal scenario for topological optics, where the non-linear response of the target is coupled with the topological structure of light. Researchers believe that this technology can be further used to characterize more complex targets, such as polycrystalline or heterostructures.

Source: Sohu

Связанные рекомендации
  • The new generation of special optical fibers is suitable for the application of quantum technology

    Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.The highly anticipat...

    2024-08-02
    Посмотреть перевод
  • Research Progress in High Efficiency Supercontinuum Spectra in Specific Wavebands Made by Shanghai Optics and Machinery High Power Laser Unit Technology Laboratory

    Recently, the High Power Laser Unit Technology Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in research on high efficiency supercontinuum in specific bands. The relevant research results were published in the Journal of Lightwave Technology under the title of "Strong Anti Stokes and flat supercontinuum in specified band based on non ...

    2023-10-17
    Посмотреть перевод
  • New Progress in Research on Three Lattice Photonic Crystal Surface Emission Lasers at Changchun Institute of Optics and Mechanics

    Recently, Tong Cunzhu, the research team of the Chinese President of Science, Chunguang Institute of Mechanical Mechanics, made important progress in the research field of photonic crystal surface emitting lasers (PCSEL), proposed a three lattice structure and achieved a low threshold 1550nm PCSEL. Relevant achievements were published in Light: Science and Application vol.13, 442024, and the famou...

    2024-03-15
    Посмотреть перевод
  • The wide application of TORNOS mind machine in diversified industrial fields

    TORNOS walking machine, also known as walking CNC lathe or spindle box mobile CNC automatic lathe, occupies an important position in the field of precision manufacturing due to its excellent performance and wide application areas. This machine tool not only integrates mechanical and electrical technologies, but also becomes an indispensable processing equipment in many industrial fields due to its...

    2024-07-24
    Посмотреть перевод
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    Посмотреть перевод