Русский

Researchers have made breakthrough discoveries in the field of nanophotonics

232
2023-11-20 14:03:56
Посмотреть перевод

Researchers have made breakthrough discoveries in the field of nanophotonics. They have successfully developed a locked mode ultrafast laser using lithium niobium, a material known for its excellent optical properties. This breakthrough opens up new possibilities for revolutionary applications, including telecommunications, data storage, and ultra fast imaging.

A mode-locked laser is a type of laser that emits extremely short light pulses at fixed intervals. Due to their ability to generate ultra short pulses, these lasers have attracted considerable attention and are crucial for many scientific and technological advancements. However, developing lasers with high-throughput and small-scale locking modes is a challenge for researchers.

The research team is addressing this challenge by utilizing nanophotonics technology and the unique characteristics of lithium niobium. Nanophotonics is the manipulation of light at the nanoscale, capable of creating devices with unprecedented functionality. Lithium niobium, as a crystalline material, exhibits excellent electro-optical properties, making it an excellent candidate for constructing mode-locked lasers.

By precisely designing the nanoscale structure of lithium niobium, scientists can achieve ultrafast blocking. Their laser emits pulses within the femtosecond range, equivalent to one millionth of a second. This extraordinary speed opens up new possibilities for applications that require ultra fast data transmission and ultra precise imaging.

Q&A:
What is nanophotonics?
Nanophotonics is a branch of science that focuses on manipulating light at the nanoscale. It involves researching and developing equipment and materials that can control and manipulate light in ways that traditional optics cannot achieve.

What is lithium niobium?
Lithium niobium is a crystalline material with excellent optical and electro-optical properties. It is widely used in various fields, including telecommunications, optical computing, and laser technology.

What is a laser with locking mode?
A mode-locked laser is a type of laser that regularly emits ultrashort optical pulses. These lasers generate pulses in the femtosecond and picosecond ranges, which are crucial for many scientific and technological applications.

This groundbreaking research paves the way for the development of ultra compact and high-performance ultra fast lasers. The potential applications of this technology are enormous, from ultra fast data transmission in telecommunications networks to ultra precision imaging in medical diagnosis. With the progress of nanophotonics and lithium niobium technology, we can look forward to more exciting discoveries in the field of ultrafast lasers.

Source: Laser Network

Связанные рекомендации
  • Progress makes laser based imaging simpler and more three-dimensional

    a. b. Schematic diagram of PACTER system calibration and imaging program. BT, beam trap; DAQ, data acquisition unit; HWP, half wave plate; PBS, polarization beam splitter; ER, traverse the relay. The difference between the two modes is highlighted by a black dashed box. c. Schematic diagram of a single component ultrasonic transducer manufactured on ER. d. The ultrasound transducer detected 1D P...

    2023-12-05
    Посмотреть перевод
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    Посмотреть перевод
  • TRUMPF helps upgrade the automation of 3D laser processing for automotive thermoforming

    (Dechengen, Germany, March 24, 2025) - TRUMPF Group in Germany has now provided end customers with a fully automated one-stop solution for laser processing systems. With this solution, customers can not only shorten the production cycle, but also effectively reduce the cost of 3D laser material processing. Our laser equipment has excellent production efficiency. Now, through the automation upgrade...

    04-02
    Посмотреть перевод
  • Ruifeng constant green laser: With dense and concentrated characteristics, it can accurately cut on PCBs and FPCs

    In the vigorous development of contemporary technology, green laser has become a shining star in the field of electronics. Not only because of its excellent performance, but also because it brings infinite imagination and creative inspiration to creators. The use of green laser for PCB (Printed Circuit Board) and FPC (Flexible Printed Circuit Board) shape cutting has opened up a new artistic journ...

    2023-09-19
    Посмотреть перевод
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    Посмотреть перевод