Русский

Shanghai Institute of Optics and Fine Mechanics has made progress in synchronously pumped ultrafast Raman fiber lasers

406
2025-06-07 10:47:47
Посмотреть перевод

Recently, the research team led by Zhou Jiaqi from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of synchronously pumped ultrafast Raman fiber lasers. The related achievements were published in Optics Express under the title "Revealing influence of timing jitter on ultra fast Raman fiber laser synchronously pumped by gain switched diode".

Synchronous pumping technology utilizes ultrafast pulses with high peak power as pumps. Compared to traditional mode-locked Raman fiber lasers with continuous optical pumping, it can effectively overcome the problem of weak Raman gain and obtain high-performance Raman solitons under short cavity conditions. For synchronously pumped Raman fiber lasers, using a gain switching diode (GSD) with adjustable repetition rate as the pump can effectively simplify the synchronization difficulty compared to a mode-locked pump source with fixed repetition rate.

The research team built a GSD synchronously pumped Raman fiber laser (Figure 1), and the experimental results revealed that the inherent strong time jitter characteristics of GSD pump pulses are the fundamental reason for reducing the time-domain stability and frequency-domain coherence of output Raman pulses. A detailed study was conducted on the time-frequency characteristics of output Raman pulses under different pump pulse widths, confirming that stretching the pulse width can effectively reduce the influence of pump time jitter and suppress the relative intensity noise of output Raman pulses (Figure 2). In addition, comparative experiments were conducted using a mode-locked laser instead of GSD pump, and the results further confirmed the key influence of pump pulse time jitter on the frequency domain coherence of output Raman pulses. This study not only deepens the understanding of GSD synchronously pumped Raman fiber lasers, but also paves the way for the generation of high-performance ultrafast Raman pulses.


Figure 1. Schematic diagram of experimental setup for GSD synchronously pumped Raman fiber laser


Figure 2. Relative intensity noise of output Raman pulses under different pumping conditions


Relevant work has been supported by the National Key R&D Program, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the National Natural Science Foundation of China and other projects.

Source: Opticsky

Связанные рекомендации
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    Посмотреть перевод
  • Korean laser company AP Systems establishes new AVP equipment division

    Recently, AP Systems, a well-known laser manufacturer in South Korea, established a new AVP equipment division for the advanced packaging field. This business unit will focus on laser equipment required for advanced packaging processes of high bandwidth memory (HBM).AP Systems is a subsidiary of APS Group, mainly focused on the fields of display and semiconductor laser processing equipment. It foc...

    01-15
    Посмотреть перевод
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    Посмотреть перевод
  • In situ bubble point measurement using spectroscopy

    Develop and research a new downhole bubble point pressure measurement technology suitable for black oil and volatile oil to enhance well analysis using spectroscopy.Representative fluid characteristics are required for a wide range of oilfield lifespans, such as the initial scale and production planning of reservoir hydrocarbon reserves. Fluid characteristics are usually obtained from laboratory s...

    2024-01-31
    Посмотреть перевод
  • Northeastern University of Japan: Breakthrough Laser Technology for Nanoscale Laser Processing

    In the fields of optics and micro/nano processing, precise manipulation of lasers to meet the growing demand for miniaturization is an important challenge in driving the development of modern electronic and biomedical equipment. Recently, researchers from Tohoku University in Japan successfully demonstrated the use of interference technology to enhance the longitudinal electric field of radially p...

    2024-04-12
    Посмотреть перевод