Русский

Ring Laser Accuracy: Unprecedented Daily Measurement and Mapping of Earth's Rotation

705
2023-11-14 14:31:46
Посмотреть перевод

Scientists at the Technical University of Munich have made significant progress in measuring the Earth's rotation with unprecedented accuracy. Now, the ring laser from the Wettzell Geodetic Observatory can be used to capture data at a quality level unmatched anywhere in the world. These measurements are crucial for determining the position of the Earth in space, assisting climate research, and improving the reliability of climate models.

Advanced ring laser technology
Want to quickly walk to the basement and see how fast the Earth has been spinning in the past few hours? Now, you can visit the Wettzell Geodetic Observatory. TUM researchers have improved the ring laser there so that it can provide daily current data, which is currently impossible at comparable quality levels.

What exactly does a ring laser measure? During the journey through space, the speed at which the Earth rotates around its axis varies slightly. In addition, the axis of planetary rotation is not completely stationary, it is a bit wobbly. This is because our planet is not completely solid, but composed of various components, some solid and some liquid. Therefore, the interior of the Earth itself is constantly moving. These mass changes can accelerate or brake the rotation of planets, and these differences can be detected using measurement systems such as TUM ring lasers.

The rotating waves are not only important for astronomy, but we also urgently need them to create accurate climate models and better understand weather phenomena such as El Ni ñ o. The more accurate the data, the more accurate the predictions, "said Professor Ulrich Schreiber, who led the project at the TUM Observatory.

Technical improvements and challenges
When repairing the ring laser system, the team prioritizes finding a good balance between size and mechanical stability, as the larger the device, the more sensitive the measurements it can make. However, size means making compromises in terms of stability and accuracy.

Another challenge is the symmetry of two relative laser beams, which is the core of the Wettzell system. Accurate measurements can only be made when the waveforms of two backpropagation laser beams are almost identical. However, the design of the device implies that there is always a certain degree of asymmetry. In the past four years, geodetic scientists have successfully captured these system effects using theoretical models of laser oscillation, so that they can be accurately calculated over a long period of time and thus eliminated from measurements.

Improve accuracy and application
The device can use this new calibration algorithm to accurately measure the Earth's rotation to 9 decimal places, equivalent to a fraction of a millisecond per day. In terms of laser beams, this is equivalent to an uncertainty starting from 20 decimal places after the optical frequency and stabilizing for several months. Overall, within approximately two weeks, the observed fluctuations reached a value of up to 6 milliseconds.

The improvement of lasers has now greatly shortened the measurement cycle. The newly developed correction program enables the team to capture current data every three hours. Urs Hugentobler, a professor of TUM satellite geodesy, said: In Earth science, such a high level of temporal resolution is absolutely novel for independent ring lasers. Compared to other systems, lasers operate completely independently and do not require reference points in space. In traditional systems, these reference points are created by observing constellations or using satellite data. However, we are independent of this kind of thing and very precise. Data captured independently of stellar observations can help identify Do not compensate for system errors in other measurement methods. The use of various methods can help to make the work particularly detailed, especially in situations with high precision requirements, such as ring lasers. In the future, there are plans to further improve the system to achieve shorter measurement cycles.

Understanding Ring Lasers
A ring laser consists of a closed square beam path, with four mirrors completely enclosed in a Ceran microcrystalline glass body, known as resonators. This can prevent the length of the path from changing due to temperature fluctuations. The helium/neon mixture inside the resonator can achieve clockwise and counterclockwise laser beam excitation.

If there were no motion of the Earth, light would travel the same distance in both directions. However, due to the device moving with the Earth, the distance of one of the laser beams is shorter because the Earth's rotation brings the mirror closer to the beam. In the opposite direction, the distance of light propagation is correspondingly longer. This effect creates a difference in the frequency of two light waves, and their superposition produces a beat note that can be measured very accurately. The higher the speed of Earth's rotation, the greater the difference between the two light frequencies. At the equator, the Earth rotates 15 degrees eastward every hour. This will generate a signal of 348.5 Hz in the TUM device. The fluctuation of a day's length is expressed as 1 to 3 millionths of a hertz.

Powerful and precise infrastructure
Each side of the ring laser located in the basement of the Wezel Observatory is four meters long. Then, the structure is anchored to a sturdy concrete column located on a sturdy bedrock in the Earth's crust, with a depth of approximately six meters. This ensures that the Earth's rotation is the only factor affecting the laser beam and excludes other environmental factors. This structure is protected by a pressurized chamber that can compensate for changes in air pressure or required temperature of 12 degrees Celsius, and automatically compensate for these changes. In order to minimize these influencing factors as much as possible, the laboratory is located at a depth of five meters below the artificial mountain. Nearly 20 years of research work have been invested in the development of measurement systems.

Source: diodelaser net

Связанные рекомендации
  • Comparative Study of Resistance Spot Welding and Laser Spot Welding of Ultra High Strength Steel for Vehicles

    Researchers from Annamarai University in India and South Ural State University in Russia reported a comparative study of resistance spot welding and laser spot welding of ultra-high strength steel for automobiles. The related research was published in The International Journal of Lightweight Materials and Manufacturing under the title "A comparative study on resistance spot and laser beam spot wel...

    2024-09-05
    Посмотреть перевод
  • Scientists are using lasers to create lunar paving blocks

    Original Hal Bowman 9000 Scientific RazorThe 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAMBy using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these exp...

    2023-10-14
    Посмотреть перевод
  • The LiDAR SLAM navigation system uses laser sensors to realize real-time 3D mapping of the environment

    Robotic lawn mowers are becoming increasingly popular due to their convenience and ability to save time and effort. Although robotic lawnmowers have made significant progress over the years, many robots still require users to lay perimeter wires to define the mowing area and remove any obstructions from the lawn to ensure the mower doesn't get stuck or damaged.Well, that's not the case with the Ne...

    2023-09-11
    Посмотреть перевод
  • TSMC's first European wafer fab receives € 5 billion subsidy for construction

    Recently, TSMC held a groundbreaking ceremony for its first European 12 inch wafer fab. It is reported that the European Union has approved Germany to provide 5 billion euros in subsidies for the factory.It is understood that TSMC's 12 inch wafer fab is located in Dresden, Germany and is called "European Semiconductor Manufacturing Company (ESMC)". In August 2023, TSMC announced a partnership with...

    2024-08-26
    Посмотреть перевод
  • How Many Laser Enterprises are There in China?

     China's laser industry began in the 1980s, when the first private laser enterprise, Chutian Industrial Laser, was founded in 1985 by Sun Wen, an alumnus of Huazhong University of Science and Technology. In the 1990s, some young people with dreams began to make their mark in the laser industry. In 1995, Gao Yunfeng, 29, rented an apartment in Huaqiangbei with a deposit of 400,000 Hong Kong dollar...

    06-30
    Посмотреть перевод