Русский

Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

491
2023-10-14 10:22:56
Посмотреть перевод

Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "Absolute measurement of focusing properties of a large aperture diffractive lens".

Compared to reflective focusing lenses, diffractive optical elements are designed flexibly, have a large aperture, are lightweight, suitable for various wavebands, and can achieve complex optical functions. Photonic sieves and zone plates are typical representatives of diffractive lenses. Considering that diffraction elements are composed of a large number of microstructures, deviations are inevitable during the machining process, so performance calibration is necessary before use.

In this study, researchers used the natural background light of a large aperture diffractive lens as a reference and entered the shear interference system together with the focused beam. Based on the interference pattern recorded by the detector, the wavefront gradient of the focused beam relative to the background light is first obtained using Fourier analysis, and then the transmitted wavefront is reconstructed using the mode method. Finally, the focal length and focal spot morphology of the diffractive lens are numerically calculated. The experimental results of a 210mm aperture diffractive lens meet theoretical expectations. Ultra large aperture zone plates and photon sieves can be used for space interferometric telescopes. The self supporting beam splitting photon sieve is suitable for focusing imaging of EUV and soft X-ray. Multi focal photon sieves can be used for X-ray interference diagnosis of plasma.

This work was supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences' pilot A program.

Figure 1. Measurement Optical Path of Large Aperture Diffractive Lens

Figure 2. Experimental results of self-developed shear interferometer and measurement

Source: Shanghai Institute of Optics and Mechanics

Связанные рекомендации
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    Посмотреть перевод
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    Посмотреть перевод
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    Посмотреть перевод
  • Northeastern University of Japan: Breakthrough Laser Technology for Nanoscale Laser Processing

    In the fields of optics and micro/nano processing, precise manipulation of lasers to meet the growing demand for miniaturization is an important challenge in driving the development of modern electronic and biomedical equipment. Recently, researchers from Tohoku University in Japan successfully demonstrated the use of interference technology to enhance the longitudinal electric field of radially p...

    2024-04-12
    Посмотреть перевод
  • Innovative laser based rain enhancement project launched by UAEREP and DERC teams

    Recently, the UAE Rainfall Enhancement Scientific Research Program launched a groundbreaking project with Dr. Guillaume Matras and his team from the Directional Energy Research Center of the Institute of Technology Innovation, aiming to address the challenge of global water shortage through advanced technology. This collaboration marks an important milestone in the field of rainfall enhancement sc...

    2024-03-02
    Посмотреть перевод