Русский

Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

377
2023-10-14 10:22:56
Посмотреть перевод

Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "Absolute measurement of focusing properties of a large aperture diffractive lens".

Compared to reflective focusing lenses, diffractive optical elements are designed flexibly, have a large aperture, are lightweight, suitable for various wavebands, and can achieve complex optical functions. Photonic sieves and zone plates are typical representatives of diffractive lenses. Considering that diffraction elements are composed of a large number of microstructures, deviations are inevitable during the machining process, so performance calibration is necessary before use.

In this study, researchers used the natural background light of a large aperture diffractive lens as a reference and entered the shear interference system together with the focused beam. Based on the interference pattern recorded by the detector, the wavefront gradient of the focused beam relative to the background light is first obtained using Fourier analysis, and then the transmitted wavefront is reconstructed using the mode method. Finally, the focal length and focal spot morphology of the diffractive lens are numerically calculated. The experimental results of a 210mm aperture diffractive lens meet theoretical expectations. Ultra large aperture zone plates and photon sieves can be used for space interferometric telescopes. The self supporting beam splitting photon sieve is suitable for focusing imaging of EUV and soft X-ray. Multi focal photon sieves can be used for X-ray interference diagnosis of plasma.

This work was supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences' pilot A program.

Figure 1. Measurement Optical Path of Large Aperture Diffractive Lens

Figure 2. Experimental results of self-developed shear interferometer and measurement

Source: Shanghai Institute of Optics and Mechanics

Связанные рекомендации
  • Photon chips help drones fly unobstructed in weak signal areas

    With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.Using this quantum technology, scientists aim to provide the same ...

    2023-10-28
    Посмотреть перевод
  • Xiaomi has recently invented a laser engraving machine that allows you to create screen printing and design using different materials

    3D printers have become popular worldwide, allowing you to create useful and beautiful products. This has sparked a trend towards DIY, which is "doing it yourself," even driving popular pages such as Etsy in Spain. In fact, an economy has been established around these types of handmade products. But there are more devices that can help with these types of creativity.The latest one is Xiaomi's inve...

    2023-12-26
    Посмотреть перевод
  • Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

    Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medi...

    2024-03-22
    Посмотреть перевод
  • TRUMPF helps upgrade the automation of 3D laser processing for automotive thermoforming

    (Dechengen, Germany, March 24, 2025) - TRUMPF Group in Germany has now provided end customers with a fully automated one-stop solution for laser processing systems. With this solution, customers can not only shorten the production cycle, but also effectively reduce the cost of 3D laser material processing. Our laser equipment has excellent production efficiency. Now, through the automation upgrade...

    04-02
    Посмотреть перевод
  • Chinese femtosecond laser company completes Pre-A round of financing

    Recently, Qingdao Free Trade Laser Technology Co., Ltd. successfully completed the Pre-A round of financing. This financing is led by Shandong Letong Science and Technology Industry Finance New Energy Industry Development Fund Center (Limited Partnership). This financing will focus on attracting professional talents, including optical engineering experts, algorithm engineers, etc., in order to a...

    2024-11-19
    Посмотреть перевод