Русский

The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

373
2025-03-26 15:03:34
Посмотреть перевод

Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process Stability Using Green Laser Radiation" was published in the conference "Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems".

Laser beam welding is increasingly being used for connecting copper materials. Compared with near-infrared radiation, green laser radiation has a significantly higher absorption rate advantage for these metals. Therefore, it is expected that there will be changes in process stability and the occurrence of defects. In addition, the influence of changing the strength distribution on the formation of weld defects and the geometric characteristics of welds in deep penetration welding mode has not been fully studied to a large extent. Therefore, the purpose of this work is to characterize the process dynamics and defect formation related to focal position and intensity distribution through high-speed imaging and metallographic analysis. Compared with the flat top intensity distribution, the weld defects observed under the Gaussian beam profile are significantly reduced. The favorable shape of the weld seam and the earlier start of deep welding process are the advantageous reasons for adopting this strength distribution, and the medium to high processing speed further improves the processing quality.

Keywords: laser beam welding; Green laser radiation; Intensity distribution; Electric vehicles; Process observation; quality improvement

 


Figure 1 Weld Defects in Copper Welding - Typical Top and Cross Sectional Views - a) Pores, b) Splashing Formation, c) Melt Spray, d) Collapse at the Root of the Weld.

Figure 2: Schematic diagram of the experimental setup used in this study (left), derivation of the composition of the weld cross-section (yellow), and defect evaluation of pores marked in green (right).

Figure 3 shows the measured intensity distribution of the flat top (left) and Gaussian (right) beam profiles.

Figure 4: The relationship between the deep penetration welding threshold and feed rate of oxygen free copper (Cu ETP) under different intensity distributions.

Figure 5: Overlapping weld profiles under different intensity distributions (laser power PL=2/3 kW, speed v=4m/min).

Figure 6 shows the relationship between the amount of spatter per unit weld length and feed rate under different intensity distributions and laser power settings.

Figure 7 shows the process instability observed in copper laser beam welding (LBW) through high-speed imaging (HSI), λ=515nm, PL=3kW, v=10 m/min, Flat top (top) and Gaussian (bottom) intensity distributions.

Figure 8 The relationship between quality loss (left) and defect area (right) under different intensity distributions and feed rate, λ=515nm, PL=1.5-3kW, dWorkpiece=340 µ m.

The purpose of this work is to characterize the process dynamics and defect formation directly related to the focal position and intensity distribution in copper welding under green laser radiation through high-speed imaging and metallographic analysis. In summary, the following conclusions can be drawn:

Compared with a flat top contour, the process under Gaussian intensity distribution is more stable, which has been consistently confirmed by splash analysis and quality loss measurement.

The favorable shape of the weld seam and the earlier start of deep penetration welding process are the advantageous reasons for adopting this strength distribution.

For Gaussian contours, selecting the appropriate focal position in the workpiece can minimize the number of weld defects, while from the perspective of melt pool area, reverse seems to be more effective.

In summary, choosing medium to high processing speeds (v>8 m/min) can improve process stability, and appropriate process parameters should be set considering application requirements (joint type, weld shape, etc.).

Source: Yangtze River Delta Laser Alliance

Связанные рекомендации
  • UCI Cinemas collaborates with The Marvels to launch its new 4K laser projector

    Cinemas are in a developmental stage. Their roles are changing and the rules are being rewritten. Many people have proposed a way to make cinemas a truly unique place by providing audiences with a higher quality experience. It is along this route that UCI Cinemas continues to move forward. In recent days, it has officially launched a 4K laser projector and had a special date with the new MCU movie...

    2023-11-14
    Посмотреть перевод
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    Посмотреть перевод
  • AM Research has released its latest quarterly data and forecast report

    Recently, additive manufacturing research company AM Research released its latest quarterly data and forecast report, which deeply analyzes the latest developments in the global 3D printing market, covering multidimensional analysis of suppliers, printing technology, geographic location, and application areas.According to the report, the global 3D printing market once again demonstrates strong gro...

    2024-09-29
    Посмотреть перевод
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    Посмотреть перевод
  • Fabrinet Laser Business Revenue Surges

    Recently, Fabrinet released its financial report for the three months ended December 27, 2024, showing that its sales and revenue exceeded expectations. During the reporting period, the company achieved sales of $834 million, a year-on-year increase of 17%. Net income increased by 25% during the same period, reaching $86.6 million.Although the growth in performance is still dominated by the optica...

    02-07
    Посмотреть перевод