Русский

University of California, Los Angeles Joins the American High Power Laser Facility Alliance

358
2023-09-15 15:34:11
Посмотреть перевод

The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.

Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.

The Phoenix Laser Laboratory at the University of California, Los Angeles is led by physics professors Troy Carter and Cristoph Niemann and has one of the highest energy lasers in the university. Phoenix lasers can be emitted into large plasma devices 20 meters (nearly 66 feet) long to reproduce conditions similar to astrophysical explosions such as coronal mass ejections or supernovae.

As part of LaserNetUS, the University of California, Los Angeles will also support experiments related to laser fusion as a potential carbon free and infinite energy source in the future.

Recently, the national ignition device at Lawrence Livermore National Laboratory demonstrated this concept for the first time, which is much larger than the Phoenix Laboratory. The Phoenix laser will assist in conducting laser target and cavity coupling research and testing the necessary scientific instruments.

Source: Laser Network

Связанные рекомендации
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    Посмотреть перевод
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    Посмотреть перевод
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Посмотреть перевод
  • Sivers Photonics has received a $1 million order for advanced optical sensing products in fields such as LiDAR and industrial applications

    Sivers Semiconductors AB announced that its subsidiary Sivers Photonics has received a new order worth $1 million for advanced optical sensing products from three customers in the fields of LiDAR, Medical, and Industrial.In the first half of the fourth quarter of 2023, new orders were received from several US clients, which will lead to the manufacturing of advanced lasers and optical amplifiers f...

    2023-11-30
    Посмотреть перевод
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    Посмотреть перевод