Русский

Breakthrough of German team in cooling scheme for 2 μm thulium fiber laser

57
2025-12-11 10:59:36
Посмотреть перевод

The thulium fiber laser operating at a wavelength of 2 microns has shown significant application prospects in fields such as healthcare, material processing, and national defense. Compared with mainstream 1-micron ytterbium lasers, its longer wavelength helps reduce the damage caused by stray light. However, despite this advantage, the output power of thulium lasers has not been able to break through the bottleneck of about 1 kilowatt in the past decade, mainly due to nonlinear effects and heat accumulation.

One promising route to break this barrier is in-band pumping — switching from diode pumping at 793 nm to laser pumping at 1.9 µm. This approach improves efficiency and reduces heat, but it introduces new challenges for fiber components, especially the cladding light stripper (CLS). CLS devices remove unwanted light traveling in the fiber’s outer cladding, which otherwise degrades beam quality and can damage components.

For in-band-pumped thulium lasers, CLS must handle high powers at long wavelengths. Conventional polymer-based CLS designs fail here: Most polymers absorb strongly at 2 µm, causing intense localized heating and rapid burnout at just a few watts. Alternatives like etched or laser-processed fibers can withstand higher powers but struggle to remove low-angle light — a critical issue for pump lasers. Multimaterial CLS designs exist, aligning layers with increasing refractive index along the fiber to spread heat, but they are complex and hard to implement.

 


Cladding light stripper (CLS) technology addresses a major challenge in scaling thulium fiber lasers beyond their long-standing 1-kW power limit. A self-adapting CLS design distributes heat along the CLS as input power increases (top to bottom in the thermal image), without meaningfully increasing in maximum temperature. By spreading heat along the fiber, the design prevents damage and enables record performance: over 20 W of stripped signal light at 2 µm and 675 W at 793 nm. Courtesy Fraunhofer Institute for Applied Optics and Precision Engineering IOF (Fraunhofer IOF), Jena/T. Lühder,.

Researchers at Fraunhofer Institute for Applied Optics and Precision Engineering IOF (Fraunhofer IOF) in Germany have developed a simpler solution: a single-material CLS with self-adapting behavior. The material’s refractive index starts slightly above that of glass and decreases as temperature rises, thanks to a strongly negative thermo-optical coefficient. At low power, the CLS strips light efficiently. As power increases, the heated sections become less effective, passing remaining light to cooler regions. This spreads heat along the fiber length instead of concentrating it at the start, preventing catastrophic overheating.

“This is a game-changer for quick lab experiments at medium powers,” said study lead author Tilman Lühder.

Backed by simulations and experiments, the team demonstrated the concept on fibers of 125-µm and 400-µm diameter for all relevant thulium wavelengths. Results show >20 W of stripped signal light at 2 µm and up to 675 W at 793 nm, setting what the researchers call a record for single-material CLS designs. Bending the fiber further boosts performance, achieving stripping efficiencies above 40 dB. Although designed for thulium lasers, the approach is adaptable: by tuning the refractive index, it can serve other systems, including erbium (1.5-µm) and ytterbium (1-µm) lasers. 

Source: photonics

Связанные рекомендации
  • Polarization polariton topology pointing towards a new type of laser

    Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type o...

    2024-05-30
    Посмотреть перевод
  • Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

    Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.The importance of micr...

    2023-09-27
    Посмотреть перевод
  • NUBURU will enter a new stage of diversified development

    Recently, NUBURU, a global developer of high-power and high brightness industrial blue light laser technology, announced the signing of a strategic commitment letter, officially launching a deep layout in the field of national defense and security. This transformation plan covers capital restructuring, technology mergers and acquisitions, and management team upgrades, marking a new stage of divers...

    02-26
    Посмотреть перевод
  • 150 kW Ultra High Power Laser Sensor Released

    Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely ...

    2024-12-27
    Посмотреть перевод
  • It is expected that the global industrial laser system market size will reach 32.2 billion US dollars by 2028, and the Asia Pacific region's investment share in laser technology will continue to rise

    According to a latest overseas market research report, it is expected that the global industrial laser system market size will reach approximately 32.2 billion US dollars by 2028, with a compound annual growth rate of 8.3% from 2023 to 2028.The future prospects of the global industrial laser system market are broad, with opportunities in numerous fields such as semiconductors and electronics, auto...

    2023-08-10
    Посмотреть перевод