Русский

Polarization polariton topology pointing towards a new type of laser

397
2024-05-30 15:40:16
Посмотреть перевод

Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type of laser based on topological polaritons.

 


Using exciton polariton detection
The material known as topological insulator has significant characteristics, that is, it is a conductor on the outside but an insulator on the inside, thanks to the junction that can be considered as an electron wave function. This characteristic ensures that electrons flow at the edges of this material without losing energy or being scattered by non-magnetic impurities. This phenomenon was first observed in condensed matter systems in 2007, and has since appeared in acoustics, cold atoms, and photon systems.

In the latest research, Wei Bao and colleagues from Rensselaer Institute of Technology explored the physical properties of topological insulators using exciton polaritons. Excitons are bound states of electrons and holes, which can form polaritons by coupling photons into semiconductor microcavities. This type of particle is an interacting boson with a small effective mass and exhibits strong nonlinearity. These comprehensive characteristics enable polaritons to form Bose Einstein condensates at much higher temperatures than cold atomic systems.

Other groups used polaritons to study topological structures, but were unable to fully aggregate topological edge states. Bao and his colleagues demonstrated how to achieve this feat by creating microcavities from crystals composed of cesium, lead, and chlorine atoms. Unlike previous studies on perovskites using bromine instead of chlorine atoms, this crystal has an isotropic refractive index, which is crucial for achieving electromagnetic modes that propagate freely at the edges of the material.

Serrated topological waveguide
As explained by the researchers, growing large and thin CsPbCl single crystals 3 is difficult because the necessary precursors cannot dissolve well in suitable solvents. They solved this problem by using toluene vapor as an antisolvent to promote the nucleation of perovskite in solution growth, or by using a long two-step cooling process in chemical vapor deposition, indicating the ability to produce both wide and thin single crystal perovskites.

The cavity is composed of perovskite crystals sandwiched between distributed Bragg reflectors, with a layer of polymer between the crystals and the upper reflector. Researchers used standard photolithography techniques to shape polymers, resulting in a series of asymmetric hexagonal holes - each hexagon has three sides with a length of 0.73 μ m and three sides with a length of 0.27 μ m. By carving two different regions in the array, one containing holes with longer edges as the base and the other containing holes with shorter bases as the base, they can create a serrated interface that serves as a "topological waveguide".

To demonstrate the characteristics of waveguides, Bao and his colleagues aimed the pump laser at a point on the interface and measured photoluminescence using a camera on a self-made microscope. They detected photoluminescence along the interface length upstream and downstream of the pump point, indicating that exciton polariton edge states propagate along the waveguide in both directions. Given that the interface contains many turns of 120 °, they concluded that even in the presence of strong obstacles, edge states can propagate - a hallmark of topological insulators.

Facing the laser state
More importantly, researchers have observed nonlinear condensation of polariton edge states. For this purpose, they created cavities with different hexagonal hole arrays, where the interface between two different regions is marked with equilateral triangles instead of serrated lines. By guiding laser pulses through spatial light modulators to pump the edges of the triangle, they once again detected photoluminescence from the interface. They found that when the pulse energy was below a certain threshold, a crystal of about 10 μ J2 per centimeter - detected light was quite weak and diffuse. However, once the threshold is exceeded, the output becomes stronger and more concentrated - it has already entered the laser state.

According to the team, this nonlinearity demonstrates polariton condensation. More importantly, when pumping more complex waveguide geometries, they saw the same behavior - they recorded an increase in strength at interfaces similar to fish, with their mouths either open or closed.

"These results establish a" room temperature polariton platform capable of constructing large-scale condensed lattices with arbitrary potential landscapes for simulating topological physics and exploring potential new phases of quantum matter, "reported Bao and colleagues.

They also believe that a relatively low energy threshold required for condensation can make energy-saving polarized polariton lasers possible. They said that even better, polarizer lasers can be connected to the array to generate high power - because their phase is different from that of traditional lasers, they will lock in each other. However, before such devices become a reality, researchers must first demonstrate how to electrically pump them, which requires determining a suitable material as the contact electrode and a perovskite that can better conduct heat.

Source: Laser Net

Связанные рекомендации
  • The 3D toy printer is easy to use and safe, perfect for children and adults

    Children (and adults) like to collect toys, but what if they can make them themselves? This is exactly the focus of the Toybox 3D printer luxury bundle. This 3D printer for children's toys incorporates innovative technology into simplified products, making it very suitable for young people. Do you want to have your own? The cost of this 3D toy printer has been reduced to $348.99.Generally speaking...

    2024-06-05
    Посмотреть перевод
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    Посмотреть перевод
  • Stratasys announces Q3 2024 financial report, with a net loss of $26.6 million

    Stratasys (Nasdaq: SSYS) has announced its earnings for the third quarter of 2024, indicating a bright future for the company. The company is increasing profits and gross margins by cutting costs and focusing more on rapidly growing industries such as aerospace, automotive, defense, medical equipment, and dentistry. CEO Yoav Zeif shared that the new F3300 3D printer has performed well in the marke...

    2024-11-15
    Посмотреть перевод
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    Посмотреть перевод
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    Посмотреть перевод