Русский

Excitation of nanostructures with two near-infrared lasers to increase emission intensity

508
2025-09-28 15:47:32
Посмотреть перевод

Recently, researchers from the Ultrafast Phenomena Laboratory at the University of Warsaw in Poland, in collaboration with a team from the Institute of Low Temperature and Structural Studies at the Polish Academy of Sciences, discovered an enhanced effect on upconversion nanoparticle emission. Relevant personnel have demonstrated that simultaneously exciting these nanostructures with two near-infrared lasers will result in a significant increase in emission intensity.

 



Under carefully chosen conditions, visible emission emerges only when both beams are applied together, even though neither beam alone produces any emission at all. The researchers then showed how this technique can be used to visualize infrared radiation beyond the sensitivity range of standard detectors.

Among photoactive materials used in photonic technologies, those that absorb lower-energy photons and emit higher-energy ones stand out. This process is made possible by sequential absorption of multiple photons, followed by the emission of a single photon with higher energy. While photon up-conversion remains one of the most widely used features of these materials, other applications arise from their nonlinear response, that is, the intensity of the emitted light is not a linear function of the excitation intensity. This nonlinearity makes lanthanide-doped upconverting nanoparticles particularly useful in enhancing the resolution of microscopic imaging. 

The current study, spearheaded by Paulina Rajchel-Mieldzioc, a Ph.D. candidate at the Ultrafast Phenomena Lab at the Institute of Experimental Physics, leveraged the fact that rare-earth metal ions, the photoactive core of upconverting nanoparticles, exhibit a complex structure of energy levels, allowing them to interact with light across a wide range of wavelengths. The study found that when these nanoparticles are illuminated not only with light of a wavelength typically used for excitation but also with additional beams in the NIR range, the emitted light intensity can increase dramatically, sometimes by several-fold.

“Furthermore, under specific conditions, visible light emission can be triggered only through the joint action of two NIR beams — neither of which produces the effect on its own” said Rajchel-Mieldzioc.

The work, according to the team, could have applications beyond infrared detection and its conversion to visible light, including in the development of novel microscopy techniques and purely optical computing.

This research was published in ACS Publications.

Source: photonics

Связанные рекомендации
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    Посмотреть перевод
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    Посмотреть перевод
  • Assisting Gas Mixing to Promote the Development of Fiber Laser Technology

    Just ten years ago, fiber laser cutting machines were considered experts in thin plates. The stores quickly realized that they had to invest in them to compete, at least by reducing their instrument materials. For high-quality sheet metal cutting, CO2 laser is still the way to go. Of course, fiber lasers can cut thicker blanks, but the quality is not very good, and their speed advantage almost dis...

    2024-01-11
    Посмотреть перевод
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-04-17
    Посмотреть перевод
  • A replica of an arcade made with a 3D printer in the 1970s

    A game museum has 3D printed a replica of a historic arcade computer space. The arcade museum in Stroud, Gloucestershire lacks the first commercial arcade video game. They collaborated with Heber company to create a real replica. Neil Thomas, the director of the arcade museum, said that because it is a replica, not an original, they are not "afraid" of letting people play with it.A spokesperson...

    2024-05-29
    Посмотреть перевод