Русский

STMicroelectronics and Metalenz collaborate to promote the popularization of metasurface optical devices

556
2025-07-18 10:42:38
Посмотреть перевод

STMicroelectronics (ST), a developer of semiconductor technologies and Metalenz, which creates metasurface optics, have announced a new license agreement.
The companies intend to broaden ST’s capability to use Metalenz IP to produce advanced metasurface optics based on ST’s manufacturing platform combining 300mm semiconductor and optics production, test and qualification. (Any) fiancial details of the arrangement were not disclosed.


300mm metasurface optics manufactured by ST Microelectronics


“STMicroelectronics offers a combination of optics and semiconductor technology. Since 2022, we have shipped well over 140 million metasurface optics and FlightSense modules using Metalenz IP,” said Alexandre Balmefrezol, Executive Vice President and General Manager of STMicroelectronics’s Imaging Sub-Group.

‘New opportunities’

“The new license agreement with Metalenz bolsters our technology leadership in consumer, industrial and automotive segments, and will enable new opportunities from smartphone applications like biometrics, lidar and camera assist, to robotics, gesture recognition, or object detection,” he said.

“Our model, processing optical technology in our 300mm semiconductor fab, ensures high precision, cost-effectiveness, and scalability to meet the requests of our customers for high-volume, complex applications.”

Rob Devlin, co-founder and CEO of Metalenz, said, “Our agreement with STMicroelectronics has the potential to further fast-track the adoption of metasurfaces from their origins at Harvard to adoption by market leading consumer electronics companies.

“By enabling the shift of optics production into semiconductor manufacturing, this agreement has the possibility to further redefine the sensing ecosystem. As use cases for 3D sensing continue to expand, ST’s technology leadership in the market together with our IP leadership solidifies ST and Metalenz as the dominant forces in the emergent metasurface market we created,” said Devlin.

The license agreement aims to address the growing market opportunity for metasurface optics, which is projected to experience significant growth to reach $2 billion by 2029, according to Yole Group’s Optical Metasurfaces 2024 report. The growth will largely driven by the industry’s role in emerging display and imaging applications, says the report.

Background information

In 2022, metasurface technology from Metalenz, which spun out of Harvard and holds the exclusive license rights to the foundational Harvard metasurface patent portfolio, debuted with ST’s market leading direct Time-of-Flight (dToF) FlightSense modules.

Replacing the traditional lens stacks and shifting to metasurface optics instead has improved the optical performance and temperature stability of the FlightSense modules while reducing their size and complexity.

The use of 300mm wafers ensures high precision and performance in optical applications, as well as the inherent scalability and robustness advantage of semiconductor manufacturing process.

Source: optics.org

Связанные рекомендации
  • Generating dark and entangled states in optical cavities: unlocking new possibilities in quantum metrology

    Physicists have been working hard to improve the accuracy of atomic clocks, which are the most precise timing devices currently available. A promising way to achieve higher accuracy is to utilize spin squeezed states in clock atoms.Spin squeezed states are entangled quantum states in which particles work together to counteract their inherent quantum noise. These states provide incredible potential...

    2024-02-20
    Посмотреть перевод
  • NASA will demonstrate laser communications on the space station to improve space communications capabilities

    Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023.ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together comp...

    2023-09-04
    Посмотреть перевод
  • Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

    The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.MEMS reflectors have gained widespread re...

    2024-03-07
    Посмотреть перевод
  • Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "...

    2023-10-14
    Посмотреть перевод
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    Посмотреть перевод