Русский

TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

468
2023-08-21 14:14:40
Посмотреть перевод

TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.

This upgrade is part of a collaboration between the University of Tel Aviv and the University of Texas at Austin, aimed at jointly developing the fundamental elements of laser plasma interaction, advancing the science and technology of compact accelerator systems and advanced light sources, with the goal of making these tools widely applicable to a wide range of end users and industries.

The upgraded UT 3 has almost twice the energy of its predecessor. This upgrade was jointly completed by personnel from TAU Systems and UT Austin, with the necessary components coming from Thales Laser. TAU has successfully achieved laser driven electronic acceleration in its new beam line design, demonstrating the new potential of the facility.

The system will now be used to develop compact new laser tail field accelerators, as well as EUV and X-ray light sources, for use in fields such as semiconductor industry, materials science, battery technology, medical imaging, etc.

Bjorn Manuel Hegelich, CEO of TAU Systems and Professor of UT Physics, said of the new features of UT 3, "After successfully completing this important UT 3 upgrade, we look forward to advancing the engineering frontier of laser driven particle accelerators. It will enable us to develop new imaging capabilities for both internal and external users of UT.

Professor Mike Downer, an outstanding physics professor at the University of Texas at Austin, also expressed the same view. He said, "The new research capabilities brought by this upgrade are exciting, and we look forward to further developing compact electron accelerators and 21st century X-ray sources.

Christine Dixon Thiessing, Vice President of the University of Texas at Austin, responsible for exploring influence, commented on the successful partnership between the university and TAU Systems, stating, "This successful project is a great example of public-private partnerships between the University of Texas at Austin and local cutting-edge industries, and also a great success story for a derivative company of the University of Texas at Austin.

The collaboration between TAU Systems and UT Austin highlights the importance of public-private partnerships in advancing scientific research and accelerating innovation.

This upgrade represents another important step in the commercial application of plasma tail field accelerators. TAU Systems plans to install a 100 times more powerful system at its recently acquired office in San Diego by the end of this year. The opening of this service center will create unprecedented opportunities for researchers in multiple fields, especially in the semiconductor manufacturing field, by exploring and measuring the 3D structure of semiconductors. The service center will also allow electric vehicle battery developers to conduct comprehensive research on battery charging and discharging.

Source: Laser Network

Связанные рекомендации
  • Coherent's first global manufacturing center in India will focus on the development, production and service of lasers, optical networking components and systems

    Coherent, a global laser giant, has signed a tripartite cooperation agreement (MoU) with the Indian Institute of Technology Madras Research Park (IIT MRP) and Guidance Tamil Nadu Investment Promotion Centre.Coherent will establish its first global Manufacturing Centre (CoE) for laser applications at IIT Madras Research Park, which will focus on R&D, production and services for lasers, optical ...

    2023-09-07
    Посмотреть перевод
  • Peking University has made significant progress in the field of photonic chip clocks

    Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for ...

    02-28
    Посмотреть перевод
  • Munich Laser World of Photonics 2025 Grand Opening

    On June 24-27, 2025, the global optoelectronic event Laser World of Photonics 2025 was grandly opened in Munich, Germany. This exhibition brings together over 1350 companies from 43 countries, making it the largest in history. Among them, international laser giants Coherent, IPG, TRUMPF, and MKS showcased their latest breakthroughs and future directions in laser technology with multiple heavyweigh...

    06-25
    Посмотреть перевод
  • Cobot Systems announces the establishment of a partnership between UR+and its laser welding collaborative robot system

    Cobot Systems announced that it has now become a UR+partner and showcased laser welding unit systems. This honor marks an important milestone in the company's journey of providing widely available automated labor solutions. This approval highlights Cobot Systems' commitment to providing innovative solutions compatible with UoRobot (UR) products, ensuring seamless collaboration with integrated lase...

    2024-05-16
    Посмотреть перевод
  • Narrow band tunable terahertz lasers may change material research and technology

    A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.By tuning the light source to 10...

    2023-11-21
    Посмотреть перевод