Português

The efficiency of crystalline silicon solar cells has exceeded 27% for the first time, and Longi's research results have been published in Nature

663
2024-10-18 14:06:40
Ver tradução

Recently, Longi Green Energy Technology Co., Ltd. (hereinafter referred to as "Longi"), as the first unit, published a research paper titled "Silicon heterojunction back contact solar cells by laser patterning" online in the journal Nature, reporting for the first time the research results of breaking through 27% of the photoelectric conversion efficiency of crystalline silicon cells through full laser patterning technology. This breakthrough marks the first time that the efficiency of crystalline silicon solar cells has exceeded 27%, setting a new milestone for photovoltaic technology and industry based on crystalline silicon materials.


It is understood that this study demonstrates the enormous potential of back contact (BC) batteries in achieving high efficiency and low cost. In order to achieve this high conversion efficiency, the Longi Central Research Institute team has conducted in-depth technical research in two key areas: silicon wafer and surface passivation contact technology. The team has developed a new type of dense heterojunction passivation contact, breaking through the industry's long-standing bottleneck of heterojunction preparation at 180-210 ℃, and achieving a process temperature of 240 ℃. At the same time, the R&D team has developed a full laser graphic process and low indium, silver free metallization scheme, which not only improves efficiency but also ensures the economic viability of BC battery technology, laying the foundation for low-cost and efficient BC battery production in the future.

In May of this year, Longi announced that its independently developed back contact crystalline silicon heterojunction solar cell (HBC) had a photovoltaic conversion efficiency of 27.30%, once again breaking the world record for single crystal silicon photovoltaic cell conversion efficiency. This is another breakthrough after Longi set the world record for HBC battery conversion efficiency of 27.09% in December 2023, and also represents Longi's confidence and strength in BC battery technology with high conversion efficiency and mass production process.

Over the past two decades, the manufacturing of crystalline silicon cells has undergone three major technological iterations. In the era of Al BSF (aluminum diffusion back surface field), the battery efficiency is less than 20%; In the PERC (passivated emitter back contact) era, the efficiency is increased to below 25%; The TOPCon (Tunnel Oxide Passivation Contact) technology upgrade that began last year has enabled the battery efficiency to exceed 25%. Looking ahead, over 26% of mass-produced battery technologies will be led by BC (Back Contact) technology. And the research achievements of Longi this time have pointed out the development direction of over 27% of ultra efficient battery technology for the industry: to promote efficiency improvement through the combination of heterojunction technology and BC structure infrastructure.

As a leading global solar technology company, LONGi adheres to a long-term development philosophy and is committed to continuously leading the technological changes in the industry through technological innovation. The publication of this research paper is the third article published by the Longi Institute of Central Research in the top academic journal Nature since 2024. The first article reported the world record for the efficiency of flexible silicon heterojunction cells based on different thicknesses, the second article reported the world record for the efficiency of perovskite/crystalline silicon stacked cells, and this article reported the world record for the efficiency of crystalline silicon cells based on BC structure.

This series of research results not only reflects Longi's profound accumulation in cutting-edge technology fields, but also further consolidates the company's global leading position in photovoltaic technology innovation. In the future, Longi will continue to cooperate with upstream and downstream industries to promote the practical application and landing of the new generation of BC technology, and help the photovoltaic industry move towards a more efficient and sustainable future.

Source: Yangtze River Delta Laser Alliance

Recomendações relacionadas
  • Researchers have discovered a new method to improve the resolution of laser processing

    Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.Their research results are published in the journal Optics Letters.Laser processing, like drilling and cutting, is crucial in industrie...

    2024-03-28
    Ver tradução
  • Researchers have proposed a new idea for quasi particle driven ultra bright light sources, which can be used in various applications from non-destructive imaging to chip manufacturing

    An international team of scientists is rethinking the fundamental principles of radiation physics, aiming to create ultra bright light sources. In a new study published in Nature Photonics, researchers from the Higher Institute of Technology in Lisbon, Portugal, the University of Rochester, the University of California, Los Angeles, and the Optical Applications Laboratory in France proposed the us...

    2023-10-24
    Ver tradução
  • AMC Theatres launches advanced laser projection technology upgrades

    AMC Cinema has long been known as the largest cinema operator in the United States and the world, and has completed upgrades to almost all its venues in the broader Chicago area, including advanced laser projection technology.The technological reform of this chain of stores has made Chicago one of the first areas in AMC's footprint to benefit from CinIonic's cutting-edge projection technology.In e...

    2023-12-23
    Ver tradução
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    Ver tradução
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    Ver tradução