Português

The wide application of laser plastic welding technology in the field of automobile manufacturing

465
2024-09-26 13:52:28
Ver tradução

With the rapid development of society, people's demands for energy conservation, emission reduction, and safety in automobiles are increasing. Automobile manufacturers are seeking lightweight manufacturing processes for automobiles, changing traditional component packaging processes, and so on. Laser plastic welding technology has emerged, and below is a brief sharing of the application of plastic laser welding technology in the field of automotive manufacturing.


Diagram of Automotive Plastic Parts Products



A plastic finished product on a car may be made of multiple materials or components. To combine the various components, mechanical fasteners, adhesives, and welding processes can be used for processing. Among these three joining methods, mechanical fasteners can quickly connect the two components, but the leak proof function of the joint is poor, and local stress can easily cause separation between polymer materials; Adhesive can form seams with excellent leak proof function, but it is difficult to handle and has a slow curing speed. At the same time, when using adhesive bonding, there are high requirements for joint preparation procedures and surface cleanliness; The welding process has a better effect, producing adhesive and stable seams, with mechanical properties similar to the parent material, and a variety of welding forms. Different welding processes can be used according to different materials, sizes, and applications.

A plastic finished product on a car may be made of multiple materials or components. To combine the various components, mechanical fasteners, adhesives, and welding processes can be used for processing. Among these three joining methods, mechanical fasteners can quickly connect the two components, but the leak proof function of the joint is poor, and local stress can easily cause separation between polymer materials; Adhesive can form seams with excellent leak proof function, but it is difficult to handle and has a slow curing speed. At the same time, when using adhesive bonding, there are high requirements for joint preparation procedures and surface cleanliness; The welding process has a better effect, producing adhesive and stable seams, with mechanical properties similar to the parent material, and a variety of welding forms. Different welding processes can be used according to different materials, sizes, and applications.

Welding of plastic components
The so-called welding of plastic components refers to the use of heating to melt the surfaces of two thermoplastic components simultaneously, and to combine the two components into one under external force.

What are the welding processes for plastic parts
Plastic welding processes can be divided into two categories: one is mechanical mobile welding processes, including ultrasonic welding, friction welding, and vibration welding; The second is the external heating welding process, including hot plate welding, hot gas welding, and implant welding. According to different heating methods, it can also be divided into heating tool welding, induction welding, ultrasonic welding, high-frequency welding, hot plate welding, laser welding, vibration friction welding, infrared welding, hot pile welding, and hot air welding.

Plastic parts can be seen everywhere on the exterior, interior, functional, and structural components of modern vehicles. Replacing traditional metal materials with plastic has achieved a very outstanding weight reduction effect, which is of great significance for saving energy and reducing greenhouse gas emissions.

Replacing metal with plastic intake manifolds in automobiles can reduce mass by 40% to 60%, with a clear surface and low flow resistance, which can improve engine performance and play a positive role in improving combustion efficiency, reducing fuel consumption, and reducing vibration and noise. According to statistics, there are currently dozens of types of plastics used in automobiles, including polypropylene, polyethylene, polyurethane, polyvinyl chloride, ABS, nylon, and thermosetting composite materials. The average amount of plastic used per car accounts for 5% to 10% of the car's weight, and the requirements for lightweight, safety, and decorative features have also driven the progress of plastic laser welding technology in the automotive field.

At present, plastic laser welding technology has been successfully applied in the manufacturing industry of automotive bumpers, instrument panels and dashboards, brake lights, airbags, car toolboxes, car door panels, and other engine related components. With many traditional metal components starting to be replaced with plastics, such as intake manifolds, instrument pointers, radiator reinforcements, fuel tanks, and filters, there is a particularly good opportunity for the application and discussion of new technologies in the field of plastic welding. Low energy consumption, high-efficiency, non-toxic, and pollution-free welding equipment will become the trend of technological progress in automotive welding lines in the future.

Source: Yangtze River Delta Laser Alliance

Recomendações relacionadas
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    Ver tradução
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    Ver tradução
  • BYD and Huagong Technology deepen strategic cooperation and exchange

    Recently, BYD Semiconductor Division held discussions and exchanges with Huagong Technology High Tech Company and Laser Company, opening a new chapter of strategic cooperation.Chen Gang, General Manager of BYD Semiconductor Division, Nie Bo, Party Committee Member and General Manager of Huagong High Tech, Wang Jiangang, Party Committee Member, Deputy General Manager of Huagong Laser, and General M...

    2024-12-11
    Ver tradução
  • Fiber laser and deburring machine have improved the production efficiency and manufacturing capability of MITS Alloy

    The heavy-duty aluminum Ute tray and roof series of MITS Alloy have been greatly welcomed and demanded.The company is headquartered in Newcastle and was founded by Tim Lightfoot and Tony Brooks in January 2015. Tim's existing business, Safety MITS, provides maintenance equipment for mining, earthwork transportation, transportation, and related industries. They jointly determined that the four-whee...

    2024-05-15
    Ver tradução
  • Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

    Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President. Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace a...

    2024-11-20
    Ver tradução