Português

Using attosecond pulses to reveal new information about the photoelectric effect

821
2024-09-02 15:22:21
Ver tradução

Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between electrons more deeply, promoting the development of technologies such as semiconductors and solar cells. The relevant paper titled 'Attested delays in X-ray molecular ionization' was published in the latest issue of the journal Nature.

The photoelectric effect refers to the phenomenon in which photons interact with molecules or atoms on a metal surface when light is irradiated, causing the metal surface to release electrons. This effect laid the theoretical foundation for quantum mechanics, but the so-called photoelectric emission delay time has always been a fiercely debated topic. The latest progress in the field of attosecond science provides an important tool for further revealing the secret of this time delay.

Research schematic diagram
In the latest study, researchers used attosecond (10 billionth of a second) X-ray pulses emitted by SLAC's linear accelerator coherent light source to ionize core level electrons and "kick" them out of molecules. Then, they used separate laser pulses to "kick" the electrons in slightly different directions based on their emission time to measure the delay time of photoelectric emission.

Research shows that this delay time is as long as 700 attosecond, and the interaction between electrons plays an important role in this delay. Researchers point out that measuring and interpreting these time delays can help better analyze experimental results, especially in fields such as protein crystallography and medical imaging where the interaction between X-rays and matter is crucial. They plan to delve deeper into the electronic dynamics within different molecular systems, further revealing new information on electronic behavior and molecular structure.

Source: Science and Technology Daily, Author: Liu Xia

Recomendações relacionadas
  • The research team at the University of Electronic Science and Technology of China has developed three innovative photonic devices

    Recently, Professor Nie Mingming from the Key Laboratory of Fiber Optic Sensing and Communication at the School of Information and Communication Engineering, University of Electronic Science and Technology of China, in collaboration with the University of Colorado Boulder, published a research paper titled "Cross polarized stimulated Brillouin scattering empowered photonics" in the top internation...

    05-30
    Ver tradução
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Ver tradução
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    Ver tradução
  • WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

    The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including...

    2023-10-10
    Ver tradução
  • Thorlabs announces acquisition of Praevium Research

    On January 13, 2025, Thorlabs announced the acquisition of long-term partner Praevium Research, a developer of high-speed tunable VCSEL. In the future, Praevium will continue to operate as a department of Thorlabs under the name Praevium Research at its existing locations in California, while retaining its current leadership.It is understood that Christopher Burgner will serve as the general man...

    01-16
    Ver tradução