Português

Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

412
2024-01-04 14:19:29
Ver tradução

According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.
The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.

It is not that the laser has been achieved, as the research project aims to characterize these nanosheets in terms of gain, temperature, and other parameters to provide data for designing future lasers.

According to the university, the team "achieved enhanced signal amplification in nanosheets through unique waveguide patterns, thereby enhancing gain and thermal stability.". These advances have had a wide-ranging impact on the applications of lasers, sensors, and solar cells, and may also affect areas such as environmental monitoring, industrial processes, and healthcare.

Under appropriate conditions, CsPbBr3 spontaneously forms atomic thick squares at around 150nm across the solution. Atomic level fine dust - quantum dots - are another form that can spontaneously form, but so far they have not provided sufficient gain for lasers.

Using micro imprinting lithography technology, waveguides were formed on a 20 x 20mm polyurethane acrylic substrate - a series of 20 μ M wide, 20 μ A long parallel channel with a depth of m, separated by 20 μ M thick wall.
These channels are filled with CsPbBr3 precursor solution and carefully wiped multiple times with a blade to evenly dose each channel.

The subsequent drying left a polycrystalline nanosheet at the bottom of each channel, which can be used for optical analysis - this is the expertise of the Busan Laboratory: the Department of Optoelectronics and Cogno Electromechanical Engineering.

"Perovskite nanosheets have properties that make them valuable for various applications," the university said. Their achievements have overcome the shortcomings of CsPbBr3 quantum dots, as their gain is essentially limited due to the short decay time of population inversion.

As part of the results, researchers created a new metric - "gain profile" - which describes the relationship between gain, spectral energy, and stripe length, and is "very convenient for analyzing local gain changes," according to the university.

The excitation and temperature dependence of the gain profile were measured, and the increase in gain and thermal stability of the polyurethane acrylate waveguide on the nanosheets was quantified.

"This enhancement is attributed to the improvement of optical constraints and heat dissipation, which is promoted by two-dimensional centroid constrained excitons and local states caused by uneven sheet thickness and defect states," said Pusan.

The collaboration between Busan National University and Oxford University in South Korea led to the publication of research results in the journal Optics: Science and Applications, titled "Enhancing perovskite nanosheets through patterned waveguides: excitation and temperature dependence of gain saturation.".

Source: Laser Net



Recomendações relacionadas
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    Ver tradução
  • Researchers use machine learning to optimize high-power laser experiments

    High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting syst...

    2024-05-24
    Ver tradução
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    Ver tradução
  • DataLase launches a new laser active transparent to white coating

    Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. Thi...

    2024-03-09
    Ver tradução
  • The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

    Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.The Laser Energy Laboratory (LLE) at the University of Rochester is one of the...

    2023-10-26
    Ver tradução