Português

New and Strongest Laser Born in the United States

483
2025-05-28 11:16:45
Ver tradução

The ZEUS laser at the University of Michigan recently achieved a breakthrough of doubling the peak power of the strongest laser in the United States through its first 2 quadrillion watt experiment. Although this instantaneous power only lasts for 25 attosecond (one billionth of a second), it exceeds the total power of the global power grid by more than a hundred times.

Karl Krushelnick, director of the G é rard Mourou Ultrafast Optics Science Center, which is affiliated with ZEUS, said, "This marks the official entry of high field strength science in the United States into unknown territories." In addition to plasma and quantum physics research, the facility's achievements will also benefit eight major fields such as healthcare and national security. As an open research platform, ZEUS has attracted 58 scientists from 22 institutions worldwide to submit experimental plans.

Professor Franklin Dollar, the leader of the first 20 quadrillion watt experiment at the University of California, Irvine, explained that "the uniqueness of ZEUS lies in its ability to decompose lasers into multiple independent light sources." His team is working to generate electron beam energy equivalent to that of a hundred meter particle accelerator, which will be 5-10 times the historical record of the facility.

John Nees (left) and laser engineer Paul Campbell (right) are working in target area 1, where the first 2 quadrillion watt user experiment will be conducted. ZEUS is now the most powerful laser in the United States

The core of the experiment lies in the innovative design of a dual laser collaborative system: one beam constructs a guiding channel, and the other beam achieves electron acceleration. Anatoly Maksimchuk, the chief engineer of the project, revealed that the team has extended the length of the helium target chamber to create a more persistent "wake field acceleration" effect of laser pulses in the plasma - when electrons chase after the decelerating laser pulses, it is like a surfer closely following the wake of a speedboat, gaining sustained kinetic acceleration.

Later this year, ZEUS will witness its iconic experiment: the collision of accelerated electrons with reverse laser pulses. In the electronic reference frame, a 3 quadrillion watt laser is equivalent to a 10 quadrillion watt pulse, which is the origin of the name "Zeva equivalent ultra short pulse system". Vyacheslav Lukin, Director of the Physics Department at NSF, pointed out that this breakthrough will drive innovation in medical technologies such as cancer treatment.

Inside this facility, which is only the size of a sports arena, there are multiple black technologies hidden: a 30 centimeter diameter titanium sapphire crystal serves as the core amplifier, and the global stock is few and far between; The pulse compression technology with a thickness of 8 microns (less than 1/10 of printing paper) breaks through the limit of energy density. John Nees, the chief engineer of the project, emphasized that the flexibility of medium-sized facilities enables them to quickly respond to new research ideas.

The upgrade path from 300 terawatts to 30 quadrillion watts is full of challenges: the titanium sapphire crystal that took four and a half years to build, and the carbon deposition problem caused by molecular residues in the vacuum chamber, have all made the team walk on thin ice. Since its launch in October 2023, ZEUS has completed 11 cutting-edge experiments and will continue to upgrade towards full power in the coming year. As NSF has stated, this' national research heavyweight 'is reclaiming America's dominant position in the field of strong lasers.

Source: Yangtze River Delta Laser Alliance

Recomendações relacionadas
  • Implementation of 20W high-power fiber optic frequency comb by the Institute of Physics, Chinese Academy of Sciences

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification.However, due to the una...

    2023-10-11
    Ver tradução
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    Ver tradução
  • Another blockbuster acquisition! The two equipment makers announced a merger to focus on laser construction

    Recently, RDO equipment announced the completion of its acquisition of Rocky Mountain Transit&laser, expanding the construction technology solutions, services and expertise of John Deere construction and Wirtgen group in eight stores in Idaho, Wyoming and Utah, RDO acquired the stores in December 2023.Adam Gilbertson, senior vice president of field technology and innovation at RDO, said the ac...

    2024-05-31
    Ver tradução
  • High performance optoelectronic device developer "Micro Source Photon" completes B+round financing

    Recently, Weiyuan Photon (Shenzhen) Technology Co., Ltd. (hereinafter referred to as "Weiyuan Photon") announced the completion of a B+round of financing, with investors including Yicun Capital, Chenfeng Capital, and Beijing Guoqian Investment. The specific amount has not been disclosed. According to its official website, MicroSource Photonics was founded in November 2018, with the main members...

    2024-07-23
    Ver tradução
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Ver tradução