Português

TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

471
2023-08-21 14:14:40
Ver tradução

TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.

This upgrade is part of a collaboration between the University of Tel Aviv and the University of Texas at Austin, aimed at jointly developing the fundamental elements of laser plasma interaction, advancing the science and technology of compact accelerator systems and advanced light sources, with the goal of making these tools widely applicable to a wide range of end users and industries.

The upgraded UT 3 has almost twice the energy of its predecessor. This upgrade was jointly completed by personnel from TAU Systems and UT Austin, with the necessary components coming from Thales Laser. TAU has successfully achieved laser driven electronic acceleration in its new beam line design, demonstrating the new potential of the facility.

The system will now be used to develop compact new laser tail field accelerators, as well as EUV and X-ray light sources, for use in fields such as semiconductor industry, materials science, battery technology, medical imaging, etc.

Bjorn Manuel Hegelich, CEO of TAU Systems and Professor of UT Physics, said of the new features of UT 3, "After successfully completing this important UT 3 upgrade, we look forward to advancing the engineering frontier of laser driven particle accelerators. It will enable us to develop new imaging capabilities for both internal and external users of UT.

Professor Mike Downer, an outstanding physics professor at the University of Texas at Austin, also expressed the same view. He said, "The new research capabilities brought by this upgrade are exciting, and we look forward to further developing compact electron accelerators and 21st century X-ray sources.

Christine Dixon Thiessing, Vice President of the University of Texas at Austin, responsible for exploring influence, commented on the successful partnership between the university and TAU Systems, stating, "This successful project is a great example of public-private partnerships between the University of Texas at Austin and local cutting-edge industries, and also a great success story for a derivative company of the University of Texas at Austin.

The collaboration between TAU Systems and UT Austin highlights the importance of public-private partnerships in advancing scientific research and accelerating innovation.

This upgrade represents another important step in the commercial application of plasma tail field accelerators. TAU Systems plans to install a 100 times more powerful system at its recently acquired office in San Diego by the end of this year. The opening of this service center will create unprecedented opportunities for researchers in multiple fields, especially in the semiconductor manufacturing field, by exploring and measuring the 3D structure of semiconductors. The service center will also allow electric vehicle battery developers to conduct comprehensive research on battery charging and discharging.

Source: Laser Network

Recomendações relacionadas
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    Ver tradução
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the generation of third harmonic in laser air filamentation

    Recently, the team from the State Key Laboratory of Intense Field Laser Physics, Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences found that the third-order harmonics induced by air filamentation of high repetition rate femtosecond lasers have significant self jitter. To solve this bottleneck problem, a solution based on an external DC electric field was proposed, which sign...

    2024-10-10
    Ver tradução
  • Using Topological Photon Chips to Uncover the Secrets of Open Systems

    Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the su...

    2024-02-02
    Ver tradução
  • Researchers propose NeuFlow: an efficient optical flow architecture that can solve high-precision and computational cost issues

    Real time and high-precision optical flow estimation is crucial for analyzing dynamic scenes in computer vision. Although traditional methods are fundamental, they often encounter issues with computation and accuracy, especially when executed on edge devices. The emergence of deep learning has driven the development of this field, providing higher accuracy, but at the cost of sacrificing computati...

    2024-03-23
    Ver tradução
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    Ver tradução