Português

Jena Helmholtz Institute Using Air Deflection Laser Beam

386
2023-10-07 15:43:58
Ver tradução

A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.

Technology and Principles
This innovative technology utilizes sound waves to regulate the air in the area where the laser beam passes through. We generated gratings using acoustic density waves, "explained first author and doctoral student Yannick Schr ö del. DESY and students at the Jena Helmholtz Institute.

With the help of special speakers, researchers shaped patterns of dense and sparse areas in the air, forming stripe gratings. Similar to how different air densities in the Earth's atmosphere bend light, the density pattern acts as a grating that changes the direction of the laser beam.

However, compared to deflection in the Earth's atmosphere, deflecting light through diffraction gratings can more accurately control lasers, "Schroeder said. The characteristics of a grating are influenced by the frequency and intensity of sound waves (in other words, volume)

Laboratory results and potential
In the initial laboratory testing, strong infrared laser pulses could be redirected in this way, with an efficiency of 50%. According to the numerical model, efficiency should be significantly improved in the future. In the first test, scientists had to turn up the volume of special speakers.

Our mobile sound level is about 140 decibels, equivalent to the sound level of a jet engine a few meters away, "explained Christoph Heyl, a scientist at DESY and the Jena Helmholtz Institute responsible for the research project. Fortunately, we are within the ultrasonic range and our ears cannot receive it.

The team sees great potential for high-performance optical technology. In the experiment, researchers used an infrared laser pulse with a peak power of 20 gigawatts, which is equivalent to the power of approximately 2 billion LED bulbs. Lasers with this power level or even higher can be used for material processing, fusion research, or the latest particle accelerators.

Within this power range, the material characteristics of mirrors, lenses, and prisms greatly limit their use, and these optical components are easily damaged by strong laser beams in practice, "Heyl explained. In addition, the quality of the laser beam will also be affected. In contrast, we have successfully deflected the laser beam in a way that ensures quality without contact.

Further applications and insights
Scientists emphasize that the acoustic control principle of lasers in gases is not limited to the generation of gratings. It may also be transferred to other optical components, such as lenses and waveguides.

We have been considering this method for a long time and quickly realized that extreme sound levels are necessary. Initially, these seemed technically infeasible, "Haier explained. However, we did not give up and ultimately found a solution with the support of researchers from Darmstadt University of Technology and Inoson Company. Firstly, we tried our technology with ordinary air. For example, in the next step, we will also use other gases to utilize other wavelengths, optical properties, and geometric shapes.

The direct deflection of light into the ambient air has been confirmed, opening up promising applications, especially as a fast switch for high-power lasers. At present, we can only imagine the potential of non-contact light control and its extension to other applications, "Heyl explained. Modern optics is almost entirely based on the interaction between light and solid matter. Our method has opened up a new direction.

Source: Laser Network

Recomendações relacionadas
  • How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

    Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.Gall...

    2024-06-12
    Ver tradução
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    Ver tradução
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    Ver tradução
  • The Danish authorities have approved the sale of this laser manufacturer to Hamamatsu, Japan

    On May 6, 2024 local time, the Danish Business Administration (DBA) approved the sale of NKT Photonics to Photonics Management Europe S.R.L, a wholly-owned subsidiary of Hamamatsu Photonics K.K.On that day, Hamamatsu Photonics received a notice from the Danish Business Administration stating that the acquisition had been approved:(Source: The Danish Business Authority)NKT Photonics stated that the...

    2024-05-09
    Ver tradução
  • Sivers will develop laser arrays for artificial intelligence and deliver prototypes in 2024

    Sivers Optics, a subsidiary of Sivers Semiconductors, has signed a product development agreement with an undisclosed company.Starting from the initial contract worth $1.3 million, the prototype will be delivered in 2024, and it is expected that the agreement will grow rapidly in 2025 before transitioning to mass production. After entering full production, customers expect the annual chip productio...

    2024-03-18
    Ver tradução