Português

Trumpf laser uses artificial intelligence technology to improve welding quality

780
2025-07-11 10:34:21
Ver tradução

At last month’s LASER World of Photonics exhibition in Munich, Germany, industrial solutions and laser giant Trumpf presented a new materials processing laser system solution specified to improve welding processes.

The system combines several sensors that monitor all process steps during laser welding. An integrated AI quality control system checks the weld seams, for example, and OCT (optical coherence tomography) monitors the welding depth of the laser.


Solution for laser welding


Martin Stambke, Product Manager, explained, “Our solution is unique on the market. We are offering all components, such as the beam source, sensors, and optics, from a single source. We also take care of installation, service, and programming of the system, which is tailored to a user.”

The new solution enables users to weld precision components that must be free of defects, such as batteries for electric cars or hairpins for electric motors. To ensure flawless weld seams, the user must set the optimum working distance between the various components and the laser. This is enabled by the programmable PFO 33 focusing optics, which can adjust the focus position of the laser independently.

‘2.5D mode’
“This so-called 2.5D mode is more cost-effective in many applications than 3D mode, in which the PFO can still move up and down during the welding process. This is because less complex controls and programming, as well as fewer moving axes, reduce acquisition, operating, and maintenance costs for the user,” said Stambke.

“In addition, it is faster for the optics to adjust the focus position themselves than to move the entire optics up and down in the laser cell. Our solution is therefore cost-efficient, yet powerful,” he said.

Better weld seam quality from the very first component With integrated optical coherence tomography (OCT), users can not only monitor the welding depth of the laser, but also check the distance between the laser and the component.

“This ensures the focus position of the laser and prevents welding errors,” said Stambke. “Moreover, VisionLine Inspect is used to check the quality of the manufactured components. A camera takes a picture of the weld seam and the system uses AI to detect any potential errors. By combining AI preprocessing and conventional algorithms, we are creating traceability and transparency.”

Source: optics.org

Recomendações relacionadas
  • Shanghai Institute of Optics and Mechanics proposes a new solution for quartz glass as a visible light laser material

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on rare earth ions Dy3+doped quartz glass as a yellow laser material, and the relevant research results were published in the Journal of the American Ceramic Society as "Effect o...

    2024-06-05
    Ver tradução
  • IMEC Introduces World's First 110GHz+ C-Band GeSi EA Modulator

    The nanoelectronics research center IMEC from Belgium announced the successful completion of a significant trial: the fabrication of a 110GHz C-band GeSi electro-absorption modulator on a 300mm silicon photonics platform.Achieving a net data rate of 400Gb/s per lane and optimized for compactness, low latency, and high energy efficiency, imec says its modulator “establishes the foundation for next-...

    10-09
    Ver tradução
  • GlobalFoundries collaborates with Corning to develop co packaged optical devices

    Chip manufacturer GlobalFoundries (GF) has partnered with fiber optic giant Corning to provide co packaged optical (CPO) interconnects for artificial intelligence data centers.The firms say that Corning’s “GlassBridge” technology, a glass-waveguide based edge-coupler compatible with the v-grooves used in GF’s silicon photonics platform, is wanted for high-bandwidth, power-efficient optical links.“...

    10-10
    Ver tradução
  • Vigo University School of Technology invents laser glass recycling system

    LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come f...

    2024-01-19
    Ver tradução
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Ver tradução