Português

The University of Illinois combines the light emitted by multiple VCSEL into a single coherent mode

6
2025-08-04 13:54:23
Ver tradução

Today, VCSELs (vertical cavity surface-emitting lasers) are used in everything from computer mice to face-scanning hardware in smart phones. They are renowned for their ability to integrate seamlessly into semiconductor chips, VCSELs are still considered to be an active field of research, and many researchers believe there are still important applications waiting to be discovered.
The laboratory of Kent Choquette, a professor of electrical and computer engineering in Grainger College of Engineering at the University of Illinois Urbana-Champaign, has developed a new design in which light from multiple VCSELs is combined to form a single coherent pattern called a “supermode”.

As the researchers report in IEEE Photonics Journal, the result is a controllable pattern brighter than what is possible with an array of independent devices.

 



940 nm dual-cavity photonic crystal VCSEL array


‘Challenging VCSELs’

“VCSELs are more challenging to work with than other kinds of lasers because they naturally tend to emit light in many special patterns, or modes, so the central problem has been figuring out how to get the light to stay in the mode you want,” Choquette said.

“The design we explore in this study is noteworthy because it shows how to extend mode control across more than one VCSEL and use an array of them in tandem to get a single desired mode. With this level of cooperation across arrays of VCSELs, we’re confident that new uses for these devices will emerge.”

Ordinarily, VCSELs are individually controlled with electrical signals, making the problem of coordinating a coherent beam across laser cavities difficult. The researchers proposed a design that makes use of a photonic crystal connecting adjacent VCSELs. So, although they are electrically independent, they act in tandem optically. This makes it possible to control both cavities in a way that produces one of two pre-determined collective patterns, or supermodes.

The details of the design, including the use of a special “anti-guided” crystal to achieve the optical coupling, were studied by Dan Pflug, an Illinois Grainger Engineering graduate student in Choquette’s laboratory and the study’s lead author.

The Illinois team then turned the design over to the company Dallas Quantum Devices, where a working device was fabricated in a foundry-level process, demonstrating that the design can be practically realized.

“Our collaboration with Dallas Quantum Devices originates in a call from the National Science Foundation for Small Business Innovation Research proposals in high-speed VCSELs,” Choquette said. “I have known some of these people for over 20 years. It’s a case where what started out as informal exchanges has led to a long-term relationship.”

For Choquette, this work is a product of discovery and innovation for its own sake. He observed that this is often where some of the most important end uses for new technologies originate. “When I started working with VCSELs 30 years ago, the interest in them was purely academic,” he said. “But one day, I got a call from Microsoft, and laser computer mice entered the market. Now, everyone uses VCSELs every day. This is the reason we do research like this: applications aren’t always obvious, and the only way to know is to try it out.”

Source: optics.org

Recomendações relacionadas
  • The semiconductor laser market is expected to reach $5.3 billion by 2029

    Nowadays, laser technology is widely used in various traditional and emerging fields, including optical communication, material processing, consumer equipment, automotive sensing and lighting, display technology, medical applications for treatment and diagnosis, as well as aerospace and defense.Especially in the semiconductor laser market, it is expected to grow from $3.1 billion in 2023 to $5.2 b...

    2024-12-03
    Ver tradução
  • Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

    Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.The importance of micr...

    2023-09-27
    Ver tradução
  • This laser cleaning "dark horse" announces annual performance and shareholder information

    On April 15th local time, Laser Photonics, a developer of laser cleaning equipment and solutions, announced its financial results for the fourth quarter and the year ended December 31, 2023. The financial report shows that in the fourth quarter of 2023, its revenue was $800000, with reduced operating and net losses. Here are the specific data:In addition to the financial report, the company's CEO ...

    2024-04-16
    Ver tradução
  • Laser photonics helps simplify maintenance processes in the mining industry

    Laser Photonics Corporation (LPC) is a leading global developer of industrial laser systems for cleaning and other material processing applications, emphasizing the critical applications of its industrial laser cleaning systems in the mining industry.Laser Photonics provides a user-friendly, ethical, cost-effective, and time-saving solution for professionals in the mining industry to maintain heav...

    2024-06-14
    Ver tradução
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    Ver tradução