Português

Fraunhofer IZM launches quantum cascade project to develop modular laser system

412
2025-07-30 11:17:54
Ver tradução

Creating new laser systems for use in spectroscopy applications is a challenging and costly endeavor. In order to give even small and medium-sized enterprises access to such innovative technology, the Fraunhofer Institute for Reliability and Microintegration (IZM) co-launched the QuantumCascade project to develop a modular laser system for a range of multispectral analytics.
This week the IZM reported on the project, which ran from 2022-2025. IZM stated, “Infrared spectroscopy has many uses in a vast range of applications, from geosciences to medical technology or even waste management and recycling. Spectroscopic analytics have become far more precise over the last two decades, and far more complex over the same period.

 



Demonstration unit created in the QuantumCascade project


“Current devices use light at different wavelengths for a range of multispectral tests, but they have become bulky and stationary. Putting their capabilities into the original handheld form factor would allow sophisticated analytics out in the field, but designing and miniaturizing the technology to do this is a resource and know-how-intensive feat,” the statement added.

‘Versatile and reliable source for spectroscopy’

This is where the QuantumCascade project enters the picture. Successful development of a modular and powerful laser system, integrated on a glass board, would bring down the R&D effort needed to develop innovative devices and give makers access to a versatile and reliable light source for spectroscopy.

Quantum cascade lasers (QCLs) operate at wavelengths between 2 µm and 15 µm, in the medium infrared (MIR) range. QuantumCascade combines up to three QCLs that can be programmed to emit pulses as short as 5 ns, which are particularly crucial for spectroscopic analytics with organic substances.

Alongside the lasers themselves, the design includes embedded laser drivers that were developed in partnership with Laser Electronics LE GmbH, and integrated optical beamforming using aspherical optics and coupling to special MIR fibers. The novel design places each QCL inside its own cavity in the glass. The temperature in each can be stabilized separately, which means that the lasers can be operated each at the right temperature and, by implication, the right wavelength.

The electronic drivers and control circuits in the design are mounted by industrial soldering processes on a thin-film metallized glass board. Selective laser etching is used to structure this glass board with µm accuracy – so that optical components can be mounted directly. The solution is highly integrated, which makes it possible to encapsulate the entire system – for operation in harsh environments or to get cleaned for use in medical applications.

When working on the laser system, the researchers could draw on the insights won in the prior PhotMan project’s work on a versatile fiber-optical sensor system. QuantumCascade is the next step in the evolution of a thin-glass platform developed at IZM that integrates and couples optical and electronic components efficiently.

Source: optics.org

Recomendações relacionadas
  • DR Laser releases its 2024 semi annual report, achieving dual growth in revenue and profit

    A few days ago, DR laser released 2024 half-yearly report, the company realized operating income of 906 million yuan in the first half of the year, a year-on-year increase of 34.40%; net profit of 236 million yuan, a year-on-year increase of 35.51%. For the reasons of performance growth, DR laser said in the half-yearly report, the company's first half of the order continued to acceptance brough...

    2024-08-23
    Ver tradução
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    Ver tradução
  • Shenzhen Guangfeng Technology may cooperate with well-known German enterprises

    Recently, Shenzhen Guangfeng Technology Co., Ltd. once again disclosed a development fixed-point notice. Unlike other fixed-point notices received this year, this fixed-point notice points to the optical components of the vehicle's dynamic color pixel lights. According to company disclosure, Guangfeng Technology recently received a development notice from a leading international brand car compan...

    2024-11-18
    Ver tradução
  • Alliance unit Hongshan Laser has released multiple "heavyweight" new products such as heavy-duty pipe cutting machines, ushering in the era of "laser+"

    On September 19th, Hongshan Laser made a stunning appearance at the Shanghai Industrial Expo with multiple flagship products. Among them, the "4+1" fully free heavy-duty groove laser pipe cutting machine TL730S, the 6G fully direct drive laser cutting machine G4020V, and the flagship drilling and attacking integrated laser composite pipe cutting machine TP65SD, represented by three new products, v...

    2023-09-21
    Ver tradução
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    Ver tradução