Português

Xi'an Institute of Optics and Fine Mechanics: New progress in large field two-photon scattering microscopy imaging technology

1089
2025-04-15 14:47:18
Ver tradução

Adaptive optics is a technique that improves imaging quality by correcting wavefront distortion. Interference focus sensing (IFS), as a new method proposed in the field of adaptive optics in recent years, has been proven to have significant effects in correcting complex aberrations in deep tissue imaging. This technology is based on measuring a single location within the sample to determine the calibration mode. This article proposes an image-based interferometric focal sensing method (IBIFS), which uses conjugate adaptive optics configuration and feedback information from image quality indicators to progressively estimate and correct the wavefront throughout the entire field of view. The sample conjugate configuration achieves synchronous correction of multiple points within the entire field of view by measuring each position point by point and correcting the mode. We conducted experimental verification of the method using fluorescent microspheres and mouse brain slices as samples on our independently built two-photon microscope system. The results indicate that compared with methods based on regions of interest, this method not only has a larger effective field of view, but also achieves more stable optimization effects.

Recently, the research team led by Dr. Yao Baoli from the National Key Laboratory of Ultrafast Optics Science and Technology at the Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, made progress in the field of large field two-photon scattering microscopy imaging. The related research results were published in Nanophotonics.

The most common AO method in the field of two-photon microscopy imaging is the Zernike mode decomposition method, which has a good effect on compensating for weaker aberrations. However, due to the limitations of the optical memory effect range, phase correction is only effective for a small field of view.

In response to the above issues, the research team proposed a large field wavefront correction method for deep tissue microscopy imaging - image-based interferometric focal sensing wavefront correction method (Figure 1). This method utilizes full field image information evaluation parameters as inputs for the interferometric focus induction method, achieving more stable correction effects while exhibiting high stability and anti-interference characteristics.

 



Figure 1. Schematic diagram of image-based interferometric focus sensing (IBIFS) method


In the resonance scanning galvanometer two-photon excitation fluorescence microscopy imaging system, researchers first performed large field wavefront correction on the fluorescent ball sample under the scatterer (Figure 2). The experimental results showed that the ROI based method only had good correction effect on the field of view near the reference point B1, while the IBIFS method (MHF based) can adjust the correction phase by using the image information feedback of the entire field of view, which has the correction effect of the entire field of view.


Figure 2. Scattering correction experiment results of fluorescent ball samples


In the scattering correction experiment of mouse brain nerve slice samples, the experimental results (Figure 3) showed that the ROI based correction effect depends on the sample structure distribution in the reference area, with better local optimization effect and poorer global optimization effect. The total intensity enhancement factor of the image corrected by the IBIFS method is 37% higher than that based on small area signals, achieving more stable large field of view correction. This technology can be applied to high-speed resonance scanning two-photon microscopy, providing enhanced microscopy imaging tools for fields such as neuroscience and developmental biology.

 



Figure 3. Scattering correction experiment results of mouse brain slice samples


The research is supported by the National Natural Science Foundation of China's National Major Scientific Instrument Development Project, National Key R&D Program, and Shaanxi Province's Key Industrial Chain Project.
The first author of the paper is Yang Ruiwen, a doctoral student from Xi'an Institute of Optics and Fine Mechanics in 2021. The corresponding authors are Researcher Yao Baoli and Senior Experimenter Yang Yanlong. Xi'an Institute of Optics and Fine Mechanics is the first completion unit and the corresponding unit.

Source: opticsky

Recomendações relacionadas
  • Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

    The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solutio...

    2024-10-08
    Ver tradução
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    Ver tradução
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    Ver tradução
  • ComNav Technologies introduces Mars Pro Laser RTK

    ComNav Technology Ltd. has introduced the Mars Pro Laser RTK, the latest addition to its Universe series GNSS receiver product line, which includes the Venus Laser RTK and Mars Laser RTK. The GNSS receiver is suitable for the land surveying, GIS and construction industries with its innovative features.Mars Pro's laser mode facilitates the use of conventional GNSS receivers in areas where signals a...

    2023-09-13
    Ver tradução
  • Breaking the production record! Laser and lithium achieve ammonia production under environmental conditions for the first time

    The application of laser technology has revolutionized the methods of nitrogen fixation, providing a new method for synthesizing ammonia under environmental conditions. Recently, researchers have used commercial carbon dioxide lasers for the first time to disrupt the nitrogen nitrogen triple bond, providing a new green alternative to the Haber Bosch process.It is reported that the international re...

    2023-10-16
    Ver tradução