Polski

Laser beam combined with metal foam to produce the brightest X-ray

478
2025-01-18 11:00:26
Zobacz tłumaczenie

According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dense matter (including plasma generated during inertial confinement fusion). The relevant research paper was published in the latest issue of Physical Review E.

The laser generated by NIF overlaps the millimeter level cylindrical silver foam target to create high-energy X-ray. Image source: Lawrence Livermore National Laboratory

The team explained the process of creating this type of X-ray: a high-power laser beam collides with silver atoms, exciting plasma and generating X-rays. The higher the atomic number of a metal atom, the higher the X-ray energy it produces.

To produce X-rays with energies higher than 20000 electron volts, the team chose metallic silver in the experiment. Since the foam structure of metal is crucial for creating high-energy X-ray, they used molds and silver nanowires to create a cylindrical target with a diameter of 4mm and a height of 4mm.

The team first freezes the nanowires suspended in the mold solution, then uses supercritical drying technology to remove the solution, and finally leaves low-density porous silver metal foam. The density of this silver foam structure is only one thousandth of that of solid silver.
This foam structure has many advantages: the laser emitted by NIF can heat a larger volume of foam material, and the heat transmission speed is far faster than that in solids. The entire silver foam cylinder was heated by a laser beam in about 1.5 billionths of a second, thus producing the brightest X-ray so far.

In addition to creating the X-ray source, the team also made in-depth exploration on a variety of different foam materials to determine which foam can provide the maximum energy output. Meanwhile, they also employed a novel data analysis technique to understand the physical properties of the generated plasma.

Source: Yangtze River Delta Laser Alliance

Powiązane rekomendacje
  • Han's Laser New Product Debuts at 2025 Munich Shanghai Light Expo

    New product launch of "Blue Hurricane" red blue integrated laser1. Ultra high power: The "red blue integrated" laser, with optimized optical path design and heat dissipation system, can stably output power exceeding industry standards, meeting high demand application scenarios.2. Dual high brightness: Integrating advanced wavelength modulation technology and materials science, both red and blue l...

    03-07
    Zobacz tłumaczenie
  • Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the tit...

    2024-06-05
    Zobacz tłumaczenie
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    Zobacz tłumaczenie
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    Zobacz tłumaczenie
  • Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

    Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improve...

    2023-09-18
    Zobacz tłumaczenie