Polski

Shanghai Institute of Optics and Fine Mechanics has made progress in synchronously pumped ultrafast Raman fiber lasers

270
2025-06-07 10:47:47
Zobacz tłumaczenie

Recently, the research team led by Zhou Jiaqi from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of synchronously pumped ultrafast Raman fiber lasers. The related achievements were published in Optics Express under the title "Revealing influence of timing jitter on ultra fast Raman fiber laser synchronously pumped by gain switched diode".

Synchronous pumping technology utilizes ultrafast pulses with high peak power as pumps. Compared to traditional mode-locked Raman fiber lasers with continuous optical pumping, it can effectively overcome the problem of weak Raman gain and obtain high-performance Raman solitons under short cavity conditions. For synchronously pumped Raman fiber lasers, using a gain switching diode (GSD) with adjustable repetition rate as the pump can effectively simplify the synchronization difficulty compared to a mode-locked pump source with fixed repetition rate.

The research team built a GSD synchronously pumped Raman fiber laser (Figure 1), and the experimental results revealed that the inherent strong time jitter characteristics of GSD pump pulses are the fundamental reason for reducing the time-domain stability and frequency-domain coherence of output Raman pulses. A detailed study was conducted on the time-frequency characteristics of output Raman pulses under different pump pulse widths, confirming that stretching the pulse width can effectively reduce the influence of pump time jitter and suppress the relative intensity noise of output Raman pulses (Figure 2). In addition, comparative experiments were conducted using a mode-locked laser instead of GSD pump, and the results further confirmed the key influence of pump pulse time jitter on the frequency domain coherence of output Raman pulses. This study not only deepens the understanding of GSD synchronously pumped Raman fiber lasers, but also paves the way for the generation of high-performance ultrafast Raman pulses.


Figure 1. Schematic diagram of experimental setup for GSD synchronously pumped Raman fiber laser


Figure 2. Relative intensity noise of output Raman pulses under different pumping conditions


Relevant work has been supported by the National Key R&D Program, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the National Natural Science Foundation of China and other projects.

Source: Opticsky

Powiązane rekomendacje
  • What are double- and triple-stack hybrid stepper motors

    Of the three primary stepper motor designs — permanent magnet, variable reluctance, and hybrid — hybrid stepper motors are arguably the most popular in industrial applications, combining the best performance characteristics of permanent magnet and variable reluctance types.Hybrid stepper motors are constructed with a rotor made of two sections, or cups, with a permanent magnet between ...

    2023-09-16
    Zobacz tłumaczenie
  • The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

    Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.According to Los Alamos researcher Han Htoon, the wor...

    2023-09-02
    Zobacz tłumaczenie
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    Zobacz tłumaczenie
  • A review of research on residual stresses in carbon steel welding

    Researchers from the University of Witwatersrand in South Africa have reported a review of research on residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and advances in advanced post weld heat treatment technologies. The relevant paper titled "A comprehensive review of residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and ...

    04-12
    Zobacz tłumaczenie
  • Ireland's first biological Brillouin microscope at Trinity College Dublin

    A project at Trinity College Dublin is now hosting Ireland's first BioBrillouin microscope instrument, applying Brillouin spectroscopy to life sciences and medicine.This should in particular enhance the College's research into cellular and tissue mechanics for the study of inflammation, cancer, and developmental biology.Brillouin microscopy offers a route to optical investigation of a biological s...

    07-14
    Zobacz tłumaczenie