Polski

Comparative Study of Resistance Spot Welding and Laser Spot Welding of Ultra High Strength Steel for Vehicles

209
2024-09-05 14:08:08
Zobacz tłumaczenie

Researchers from Annamarai University in India and South Ural State University in Russia reported a comparative study of resistance spot welding and laser spot welding of ultra-high strength steel for automobiles. The related research was published in The International Journal of Lightweight Materials and Manufacturing under the title "A comparative study on resistance spot and laser beam spot welding of ultra high strength steel for automotive applications".

 



This study investigated the effects of resistance spot welding (RSW) and laser spot welding (LBSW) processes on the microstructure evolution, load-bearing capacity, heat affected zone (HAZ) softening, and corrosion resistance of ultra-high strength steel (UHSS) joints welded using lap design. A dual phase 1000 grade (UHSDP1000) ultra-high strength steel plate with a thickness of 1.20 millimeters was welded using response surface methodology (RSM) optimized RSW and LBSW parameters. The microstructure characteristics of the welding area of RSW and LBSW joints were studied using an optical microscope (OM). The load bearing capacity of RSW and LBSW joints was evaluated using tensile shear failure load (TSFL) and cross tensile failure load (CTFL) tests. The fracture surfaces of TSFL and CTFL test samples were observed using scanning electron microscopy (SEM). The microhardness distribution of the RSW and LBSW joint area was evaluated and attributed to the TSFL and CTFL failures of the joint. The corrosion resistance of RSW and LBSW joints was analyzed using potential corrosion and immersion corrosion tests. The TSFL and CTFL durability of RSW joints are 183% and 62.79% higher than those of LBSW joints, respectively. Due to the smaller bearing area, the TSFL and CTFL durability of LBSW joints is not as good as that of RSW joints. This leads to stress concentration in the FZ and HAZ of the LBSW joint. RSW and LBSW joints exhibit TSFL and CTFL failures in fracture mode, accompanied by HAZ tearing. The reason for the failure of RSW and LBSW joints in the heat affected zone is softening caused by martensitic tempering and grain coarsening. The corrosion resistance of LBSW joints is worse than that of RSW joints, due to the higher content of martensite, which increases the proportion of pitting sites and reduces the corrosion resistance.

 


Figure 1. Potential applications of UHSS in automotive structural frameworks.

 


Figure 2. a) Images of RSW and b) LBSW machines used for manufacturing joints.

 


Figure 3. RSWed UHSDP1000 steel joint image: a) TSFL; b) CTFL test samples.

 


Figure 4. LBSWed UHSDP1000 steel joint image: a) TSFL; b) CTFL test samples.

 


Figure 5. a) Tensile testing machine setup; b) TSFL test setup; c) CTFL test setup.

 


Figures 6 and 7 respectively show a schematic diagram of the electrochemical corrosion test (top image) and a picture of the test sample (bottom image).

 


Figure 8. Typical macro images of spot welded joints: a) RSW and b) LBSW.

 


Figure 9. a) Images of TSFL samples with broken RSW joints and b) LBSW joints.

 


Figure 10. a) CTFL sample images of RSW joint and b) LBSW joint rupture.

 


Figure 11. a) Transverse BM section; b) Optical microstructure of longitudinal BM cross-section.

 


Figure 12. Microstructure of UHSDP1000 steel spot welded joint in different regions: a) FZ of RSW joint, b) UC-HAZ, c) IC-HAZ, d) LC-HAZ, and e) FZ of LBSW joint f) UC-HAZ、g) IC-HAZ、h) LC-HAZ。

summary
1. The FZ microstructure of RSW joint shows the evolution of acicular ferrite, Flat noodles martensite and polygonal ferrite. Since the cooling rate of LBSW is faster than that of RSW, FZ of LBSW joint shows a finer lath martensite structure and a certain proportion of acicular ferrite.

2. Compared with the LBSW joint, the TSFL and CTFL durability of the RSW joint have been improved by 183% and 62.79%, respectively. Due to the relatively small load-bearing area, the TSFL and CTFL durability of LBSW joints is not as good as that of RSW joints. This leads to stress concentration in the FZ and softened HAZ of the LBSW joint.

3. RSW joint and LBSW joint fracture failure, UHSDP1000 steel tearing in HAZ. The RSW joint exhibits a ductile failure mode, while the LBSW joint shows a combination of ductile and brittle failure modes, due to stress concentration in the softened HAZ leading to more tearing on the HAZ side.

4. The HAZ hardness of RSW and LBSW joints has significantly decreased, leading to HAZ softening problems, mainly due to the presence of a large amount of martensite in the microstructure of UHSDP1000 steel.

5. The TSFL failure of RSW and LBSW joints in the HAZ is attributed to softening caused by martensitic tempering and grain coarsening in the HAZ.

6. Compared with RSW joints, LBSW joints have higher FZ hardness, mainly due to the finer martensitic microstructure in FZ.

7. The corrosion resistance of LBSW joints is lower than that of RSW joints, because the martensite content is higher, which is conducive to an increase in the proportion of pitting sites and a decrease in corrosion resistance.

Source: Yangtze River Delta Laser Alliance

Powiązane rekomendacje
  • The birth of multi photon 3D laser printing technology: printing millions of particles within 1 second

    Multi photon 3D laser printing technology, as a disruptive micro manufacturing technology, is facing two major challenges: speed and material compatibility. However, the latest research has made breakthrough progress, successfully increasing printing speed tenfold while maintaining excellent detail accuracy.In this remarkable study, scientists abandoned the traditional single beam printing method ...

    2024-04-19
    Zobacz tłumaczenie
  • Atomstack leads the new track of intelligent laser engraving

    In today's rapidly developing technology, laser engraving technology is like a mysterious magician, constantly demonstrating amazing skills. In this field full of creativity and competition, Atomstack stands out with its outstanding technology and innovative spirit, becoming a leader in the new track.As the only enterprise in the semiconductor laser engraving machine industry with an annual shipme...

    2024-11-15
    Zobacz tłumaczenie
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    Zobacz tłumaczenie
  • Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

    The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;Based on over 20 years of experience in pulse laser technology.Shanghai, China, August 8, 2024- AMS, a leading global optical soluti...

    2024-08-09
    Zobacz tłumaczenie
  • The 3D toy printer is easy to use and safe, perfect for children and adults

    Children (and adults) like to collect toys, but what if they can make them themselves? This is exactly the focus of the Toybox 3D printer luxury bundle. This 3D printer for children's toys incorporates innovative technology into simplified products, making it very suitable for young people. Do you want to have your own? The cost of this 3D toy printer has been reduced to $348.99.Generally speaking...

    2024-06-05
    Zobacz tłumaczenie