Polski

New nanophotonic circuits demonstrate the potential of quantum networks

945
2024-08-14 11:21:40
Zobacz tłumaczenie

The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue of Physical Review X.

The newly developed technology utilizes laser cooling to capture atoms in integrated nanophotonic circuits. Light propagates through a tiny photon "line" (a waveguide that is 1/200 thinner than a human hair). These atoms are frozen to minus 273.15 degrees Celsius and are essentially in a static state. At such low temperatures, atoms can be captured by a pulling beam aimed at a photonic waveguide and placed at a distance much shorter than the wavelength of light (approximately 300 nanometers). Within this distance, atoms can effectively interact with photons in the photonic waveguide.

Researchers are conducting experiments
Using the most advanced nanomanufacturing instruments, the team designed a photonic waveguide into a circular structure with a diameter of approximately 30 microns, forming a so-called micro ring resonator. Light will circulate within the micro ring resonator and interact with the captured atoms.

This atomic coupled micro ring resonator is like a transistor for photons. People can use these captured atoms to control the flow of light through circuits. If atoms are in the correct state, photons can be transmitted through circuits. If the atom is in another state, photons will be completely blocked. The stronger the interaction between atoms and photons, the more effective the "gate" of passage and obstruction.

The team captured up to 70 atoms, coupling them all to photons and controlling their transmission on an integrated photonic chip, achieving a "collective" high-intensity interaction with light.

This research result can provide photon links for future distributed quantum computing based on neutral atoms. It can also serve as a new experimental platform for studying light matter interactions or ultra cold molecules.

Source: Opticsky

Powiązane rekomendacje
  • Researchers use a new frequency comb to capture photon high-speed processes

    From detecting COVID in respiration to monitoring greenhouse gas concentrations, laser technology called frequency combs can recognize specific molecules as simple as carbon dioxide to as complex as monoclonal antibodies, with unparalleled accuracy and sensitivity. Although frequency combs have incredible capabilities, their ability to capture high-speed processes such as hypersonic propulsion or ...

    2023-11-02
    Zobacz tłumaczenie
  • 2026 SPIE Entrepreneurship Challenge Opens for Registration

    Applications are now open for the 2026 SPIE Startup Challenge. The annual entrepreneurial pitch competition is held by SPIE, the international society for optics and photonics, as part of SPIE Photonics West.In 2026, Photonics West will be held 17-22 January in San Francisco’s Moscone Center, with the SPIE Startup Challenge finals being held 20 January.The SPIE Startup Challenge is a competitive e...

    09-08
    Zobacz tłumaczenie
  • University of California, Los Angeles Joins the American High Power Laser Facility Alliance

    The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.The Phoenix Laser Laboratory at the Uni...

    2023-09-15
    Zobacz tłumaczenie
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Zobacz tłumaczenie
  • Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

    Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".Digital holography is a tech...

    03-20
    Zobacz tłumaczenie