Polski

Researchers use a new frequency comb to capture photon high-speed processes

395
2023-11-02 14:59:09
Zobacz tłumaczenie

From detecting COVID in respiration to monitoring greenhouse gas concentrations, laser technology called frequency combs can recognize specific molecules as simple as carbon dioxide to as complex as monoclonal antibodies, with unparalleled accuracy and sensitivity. Although frequency combs have incredible capabilities, their ability to capture high-speed processes such as hypersonic propulsion or protein folding into final three-dimensional structures is limited.

The National Institute of Standards and Technology (NIST), Toptica Photonics AG, and the University of Colorado at Boulder have now established a frequency comb system that can identify the presence of certain molecules in samples every 20 nanoseconds or billionths of a second.

Researchers may be able to use frequency combs to better understand the instantaneous intermediate steps in rapid movement, from the mechanics of hypersonic jet engines to the chemical reactions between enzymes that use this new function to regulate cell growth. The research results were published by the research team in the journal Nature Photonics.

The researchers used the commonly used dual frequency comb arrangement in their experiment, which consists of two laser beams that work together to detect the color spectrum of molecular absorption. Most dual frequency comb configurations use two femtosecond lasers to synchronously emit a pair of ultrafast pulses.

In this new experiment, researchers used a simpler and cheaper device called an "electro optical comb", which divides a continuous beam of light into two beams. Then, the electronic modulator changes the beam of light, generating an electric field, shaping them into a single "tooth" of a frequency comb. Each tooth represents a different color or frequency of light that can be absorbed by molecules of interest.

In a typical trial run, the electro-optical comb used by the researchers only contained 14 teeth, while the traditional frequency comb had thousands or even millions of teeth. However, researchers were able to detect changes in light absorption on a time scale of 20 nanoseconds, as each tooth has higher light power and is spaced apart from other teeth in frequency.

Researchers used a small nozzle in an inflatable cylinder to measure the pulse of supersonic carbon monoxide 2 when they appeared for demonstration. Measure the content of carbon dioxide in the air, or the proportion of CO2 mixture. Researchers can determine the concentration of pulse motion 2 by observing changes in carbon monoxide.

Scientists have observed how carbon monoxide reacts with the atmosphere in Mode 2, resulting in a change in atmospheric pressure. Even with state-of-the-art computer simulations, it is difficult to accurately extract these details.

The data collected from these studies can shed light on how to better understand how greenhouse gases interact with climate or lead to the design of internal combustion engines.

In the setup, an optical parametric oscillator was used to shift the comb teeth from near-infrared color to mid infrared color absorbed by carbon monoxide. However, the optical parametric oscillator can be set to various parts of the mid infrared spectrum, allowing the comb to detect different substances that absorb light in these areas.

This study includes information that other researchers can utilize to develop similar systems in the laboratory, making this new technology publicly available in a wide range of research fields and industries.

Long pointed out, "With this setting, you can generate any comb you want. The adjustability, flexibility, and speed of this method open the door to many different types of measurements.

Source: Laser Network

Powiązane rekomendacje
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Zobacz tłumaczenie
  • Efficient implementation of laser welding automation using modern measurement technology

    Ensuring the integrity and quality of the welded hair clip is crucial in the assembly of electric motors. Usually, 160 to 220 hair clips are welded to each motor, and the accuracy of these welds directly affects the overall quality of the stator and motor. The traditional method of detecting these welds is difficult to balance the requirements of safety and accuracy, which often leads to damage to...

    2024-06-13
    Zobacz tłumaczenie
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    Zobacz tłumaczenie
  • Coherent launches 12 kW sheet metal laser cutting processing head

    Recently, Coherent, an industrial laser technology giant, announced the launch of a new 2D laser cutting head - CUT12, which combines excellent performance, high versatility, and profound value for the global flat cutting market. Image source: CoherentThe CUT12 sheet metal laser cutting processing head is perfectly compatible with fiber lasers in the power range of 4 kW-12 kW (continuous wave),...

    2024-10-29
    Zobacz tłumaczenie
  • Tongkuai will participate in the laser fusion energy research program

    The US Department of Energy recently allocated $42 million to support the development of laser fusion technology and designated three new research and innovation centers. This strategic investment aims to promote laser based nuclear fusion to play an important role as a clean and sustainable energy source in the future. Trumpf is one of the main participants known for its laser expertise and activ...

    2024-02-01
    Zobacz tłumaczenie