Polski

Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

997
2024-08-05 15:08:57
Zobacz tłumaczenie

The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or gas environments.

In such a multi parameter system, it is impossible to precisely control the resulting nanostructures without a deep understanding of the chemical and physical processes influenced by the environment.

This review aims to provide a detailed and systematic exposition of these processes, examining mature and emerging laser technologies used for producing advanced nanostructures and nanomaterials. Both gases and liquids are considered potential reaction environments that affect the manufacturing process, and subtractive and additive manufacturing methods are also analyzed. Finally, the prospects and emerging applications of such technologies were also discussed.

Through an overview of the history and latest achievements in the field of laser chemistry, researchers have concluded that the development of laser technology, green chemistry methods, and nanophotonics has led to a paradigm shift in modern nanomanufacturing. By changing parameters such as laser beam intensity, environmental composition, and absorption spectra, people can switch between additive manufacturing and subtractive manufacturing or between chemical modification and morphological surface modification under almost the same processing arrangement.

Laser radiation triggers these processes in two different ways:
1) Photochemical action: Photons excite molecular oscillations or electrons in the environment, or generate electron hole pairs on the surface. In this case, the laser wavelength corresponds to certain absorption bands of the material. Therefore, at a time scale greater than that required for chemical reactions, the material will be displaced from thermal equilibrium. Chemical reactions are activated by free charge carriers, or the threshold is lowered due to this excitation.

2) Thermal induction effect: The absorbed laser radiation raises the interface temperature and becomes a local heat source. In this case, thermal equilibrium can be assumed, and chemical reactions are activated by the increased temperature at the interface.

Both of these physical pathways can save a significant amount of energy during the production process. The photochemical method can avoid the Maxwell Boltzmann energy distribution of reactants, in which case only the high-energy "tail" can overcome the reaction barrier, and the rest only dissipate energy. The efficiency of laser-induced thermochemical patterning is higher than that of traditional chemical reactors because light is only localized in the area that needs to be processed. The ultimate goal of this direction is to achieve high control over reaction product parameters, high spatial accuracy, low toxicity, and cost-effectiveness, making laser chemistry methods suitable for industrial scale applications in fields such as flexible electronics, planar optics, sensing, catalysis, supercapacitors, and solar energy.



Source: Yangtze River Delta Laser Alliance

Powiązane rekomendacje
  • Marvel Fusion received an additional € 50 million in Series B funding

    Recently, Marvel Fusion, which focuses on developing laser fusion energy systems, announced that the company has received an additional € 50 million in Series B funding. This latest investment is provided by EQT Venture Capital and Siemens Energy, and is also the first investment of the European Innovation Council (EIC) fund in fusion energy. In addition to the 63 million euros investment announce...

    04-08
    Zobacz tłumaczenie
  • NIST utilizes laser reflection to enhance 3D metal printing

    A project at NIST has developed a new way to monitor and assess 3D printing of metals.Finding and correcting defects inadvertently created inside a 3D printed part is one of the biggest challenges for metal printing, commented NIST. But getting a close look at the printing operation as it's underway is not easy.As well as the toxicity of the raw materials, there can be a risk of combustion or expl...

    09-18
    Zobacz tłumaczenie
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    Zobacz tłumaczenie
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    Zobacz tłumaczenie
  • Pressure sensing using dual color laser absorption spectroscopy

    The research team led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences recently designed a concentration independent pressure sensing technology for high-temperature combustion diagnosis. This method is based on dual color laser absorption spectroscopy.The results of this study have been published in Optics Letters.Aircraft eng...

    2024-03-09
    Zobacz tłumaczenie