Polski

Laser blasting promises to solve global plastic problem

787
2024-07-16 14:30:55
Zobacz tłumaczenie

Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.

This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.

This discovery has the potential to improve the way we handle plastics that are currently difficult to decompose. The relevant research results have been published in the journal Nature Communications.

By utilizing these unique reactions, we can explore new ways to convert environmental pollutants into valuable reusable chemicals, thereby promoting the development of a more sustainable and circular economy, "said Yuebing Zheng, a professor in the Walker Department of Mechanical Engineering at the Cockrell School of Engineering at the University of Texas at Austin and one of the project leaders." This discovery is of great significance for addressing environmental challenges and advancing the field of green chemistry.

Plastic pollution has become a global environmental crisis, with millions of tons of plastic waste accumulating in landfills and oceans every year. Traditional plastic degradation methods often have high energy consumption, are harmful to the environment, and have poor results. Researchers envision using this new discovery to develop efficient plastic recycling technologies to reduce pollution.

Researchers use low-power light to break the chemical bonds of plastics and create new chemical bonds, transforming the material into luminescent carbon dots. Due to the diverse capabilities of carbon based nanomaterials, there is a high demand for these carbon dots, which may be used as storage devices in the next generation of computer equipment.

Transforming plastics that can never be degraded into materials useful for many different industries is exciting, "said Jingang Li, a postdoctoral student at the University of California, Berkeley who started this research at the University of Texas at Austin.

The specific reaction he mentioned is called "C-H activation", which selectively breaks the carbon hydrogen bonds in organic molecules and converts them into new chemical bonds. In this study, two-dimensional materials catalyzed this reaction, turning hydrogen molecules into gas and allowing carbon molecules to combine with each other to form carbon dots for storing information.

Further research and development are needed to optimize this photo driven C-H activation process and scale it up for industrial applications. However, this study represents significant progress in finding sustainable solutions for plastic waste management.

The photo driven C-H activation process demonstrated in this study can be applied to many long-chain organic compounds, including polyethylene and surfactants commonly used in nanomaterial systems.

Other co authors come from the University of Texas at Austin, Northeastern University in Japan, University of California, Berkeley, Lawrence Berkeley National Laboratory, Baylor University, and Pennsylvania State University.

This work has received funding from the National Institutes of Health, National Science Foundation, Japan Association for the Advancement of Science, Hirose Foundation, and National Natural Science Foundation of China.

Source: OFweek

Powiązane rekomendacje
  • Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

    Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.The importance of micr...

    2023-09-27
    Zobacz tłumaczenie
  • Using laser controlled filaments in vanadium dioxide to enhance neural morphology calculations

    In a new "Progress in Science" study, scientists from the University of Science and Technology of China have developed a dynamic network structure for neural morphology calculations using laser controlled conductive wires.Neuromorphic computing is an emerging research field that draws inspiration from the human brain to create efficient and intelligent computer systems. The core of neuromorphic co...

    2023-10-13
    Zobacz tłumaczenie
  • Han's Laser's net profit in the third quarter decreased by 45.37% year-on-year

    Recently, Han's Laser released a third quarter report, stating that the company achieved a revenue of 3.301 billion yuan in the third quarter, a year-on-year decrease of 8.96% (after adjustment); The net profit attributable to shareholders of the listed company was 209 million yuan, a year-on-year decrease of 45.37% (after adjustment).During the reporting period, the company's operating profit, to...

    2023-10-25
    Zobacz tłumaczenie
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    Zobacz tłumaczenie
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    Zobacz tłumaczenie