Polski

MIT researchers have demonstrated a novel chip based resin 3D printer

517
2024-06-17 15:22:09
Zobacz tłumaczenie

Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.

The prototype processor does not have mobile components, but uses a series of small optical antennas to guide the beam of light. The beam is projected upwards into the liquid resin, which is carefully designed to quickly cure when exposed to the visible wavelength of the beam.
By integrating silicon photonics and photochemistry, interdisciplinary research teams can demonstrate a chip that can guide a beam of light to 3D print any two-dimensional design, including the letters M-I-T. The shape can be fully constructed within seconds.

Silicon Photonics and Special Resins
The Notaros group, which specializes in silicon photonics, has created an integrated optical phased array device that uses a microscale antenna on a chip to guide a beam of light. They can change the optical signals on both sides of the antenna array to control the beam of light. These systems are crucial for LiDAR sensors, which use infrared light to measure the surrounding environment. Recently, the group has shifted its focus to devices that generate and guide visible light for augmented reality applications.

Around the same time as they began brainstorming, the Page team at the University of Texas at Austin developed for the first time a specialized resin that could rapidly cure using visible light wavelengths. This is the missing part that makes chip based 3D printers a reality.
Corsetti added, "Here, we manufacture this chip based 3D printer by using visible light curing resin and visible light emitting chips, meeting between standard photochemistry and silicon photonics. You integrate the two technologies into a completely new idea.".

Chip based resin 3D printer
Their prototype consists of a photonic chip with a 160 nanometer optical antenna array. The thickness of a piece of paper is about 100000 nanometers. The entire chip is suitable for a quarter of the United States.

When driven by an off chip laser, the antenna guides the controllable visible beam into the holes of the photocured resin. The chip is located below a transparent glass slide, similar to the glass slide used in a microscope, which has a small depression that can capture resin. Researchers use electrical pulses to guide laser beams in a non mechanical manner, making the resin harden at any point of impact.

The Page team at the University of Texas at Austin works closely with the Notaros team at the Massachusetts Institute of Technology to fine tune chemical combinations and concentrations to achieve a formula with a long shelf life and solidification.
Finally, scientists have demonstrated that their prototype can 3D print any two-dimensional shape in just a few seconds.

expectation
In the long run, researchers envision a system where a photon chip is located at the bottom of a resin well and creates a 3D hologram of visible light, thereby solidifying a complete object in one step.
This type of portable 3D printer can have a wide range of applications, including allowing doctors to build customized medical device components and engineers to create rapid prototypes in the workplace.

This study received partial support from the National Science Foundation, the Defense Advanced Research Projects Agency, the Robert Welch Foundation, the MIT Rolf G. Rocher Endowment Scholarship, and the MIT Frederick and Barbara Croning Scholarship.

Source: Laser Net

Powiązane rekomendacje
  • Due to breakthroughs in microchip photonics, microwave signals have now become very accurate

    Zhao Yun/Columbia Engineering Company provided an advanced schematic of a photonic integrated chip, which aims to convert high-frequency signals into low-frequency signals using all optical frequency division.Scientists have built a small all optical device with the lowest microwave noise ever recorded on integrated chips.In order to improve the performance of electronic devices used for global n...

    2024-04-01
    Zobacz tłumaczenie
  • Researchers have created an X Lidar lidar to help airports operate during volcanic eruptions

    Engineer and inventor Ezequiel Pawelko is one of the creators of X Lidar, a laser technology that can detect volcanic ash in the atmosphere, draw safe flight paths, and maintain airport operations during volcanic eruptions. Nowadays, he is engaged in other applications such as detecting space debris, monitoring natural resources and fisheries, preventing fires, and drawing radiation and wind maps ...

    2023-12-27
    Zobacz tłumaczenie
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Zobacz tłumaczenie
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    Zobacz tłumaczenie
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    Zobacz tłumaczenie