Polski

Due to breakthroughs in microchip photonics, microwave signals have now become very accurate

913
2024-04-01 14:12:55
Zobacz tłumaczenie

Zhao Yun/Columbia Engineering Company provided an advanced schematic of a photonic integrated chip, which aims to convert high-frequency signals into low-frequency signals using all optical frequency division.

Scientists have built a small all optical device with the lowest microwave noise ever recorded on integrated chips.


In order to improve the performance of electronic devices used for global navigation, wireless communication, radar, and precise timing, reliable microwave sources must be used as clocks and information carriers. To achieve this, it is necessary to minimize phase change noise or random fluctuations to the greatest extent possible.

David M. Rickey, Professor of Applied Physics and Materials Science and Professor of Electrical Engineering at Columbia Institute of Engineering, Alexander Gaeta, reported that a technology called optical frequency division has produced the lowest noise microwave signal in the past decade.
Optical frequency division is the latest innovation used to generate low signal strength microwaves, but its low noise level makes it unsuitable for small sensing and communication applications that require more compact microwave sources.

Gaeta announced that they have created a device that can accurately achieve optical frequency division on a chip using a single laser in a space as small as 1 mm2. This is a breakthrough that simplifies device design.
Gaeta's team focuses on quantum and nonlinear photonics, with a focus on studying the interaction between lasers and matter. The areas of interest include nonlinear nanophotonics, frequency comb generation, ultrafast pulse interactions, and the generation and processing of quantum states of light.
He and his colleagues developed and constructed an all optical on-chip device that uses a silicon nitride microresonator connected by two photons to generate a 16 GHz microwave signal, with frequency noise being the lowest recorded frequency in integrated chip platforms.

The input wave is fed into two micro resonators through a single frequency laser. One of the microresonators is used to generate an optical parametric oscillator, converting the input wave into two output waves of different frequencies. The frequency interval of the new wave is modified to adapt to the terahertz range, and the noise generated by the oscillator can be thousands of times lower than the input laser wave.

This will generate a second microresonator, transforming the optical frequency comb into one of four frequency combs with microwave spacing; Once completed, the optical pulse from the oscillator is fed into the comb generator to synchronize the microwave comb frequency with the terahertz oscillator, synchronizing the two bits and maintaining the optical frequency refractive index.

The research conducted by the Gaeta team demonstrated a simple optical frequency division method that can be carried in small, sturdy, and lightweight boxes. This breakthrough opens up the possibility of chip level technology, which can generate pure and reliable microwave signals similar to those in precision measurement laboratories.

According to his statement, the use of all-optical frequency division can improve the accuracy of microwave radar in autonomous vehicle.
The main idea of this project was proposed by graduate and postdoctoral students Gaeta, Zhao Yun, and Yoshitomo Okawachi. Zhao and Jae Jang subsequently studied these devices and conducted experiments.

This project was developed in close collaboration with Michal Lipson and his team, as well as Cornell University professors Eugene Higgins and Michal Lipson, who were also involved in the construction of photonic chips.

Source: Laser Net

Powiązane rekomendacje
  • Laser photonics helps simplify maintenance processes in the mining industry

    Laser Photonics Corporation (LPC) is a leading global developer of industrial laser systems for cleaning and other material processing applications, emphasizing the critical applications of its industrial laser cleaning systems in the mining industry.Laser Photonics provides a user-friendly, ethical, cost-effective, and time-saving solution for professionals in the mining industry to maintain heav...

    2024-06-14
    Zobacz tłumaczenie
  • Unsupervised physical neural network empowers stacked imaging denoising algorithm

    In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engin...

    03-25
    Zobacz tłumaczenie
  • Micro laser opens the door to chip size sensors

    The new device is a frequency comb - a special type of laser that can generate multiple wavelengths of light, each with a fixed frequency interval. On the spectrogram, it looks a bit like the teeth of a comb. In approximately a quarter century since their first development, these "cursor rulers" have completely transformed various high-precision measurements from timing to molecular detection. In ...

    2024-03-13
    Zobacz tłumaczenie
  • China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

    Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoros...

    2024-06-28
    Zobacz tłumaczenie
  • Korean laser company AP Systems establishes new AVP equipment division

    Recently, AP Systems, a well-known laser manufacturer in South Korea, established a new AVP equipment division for the advanced packaging field. This business unit will focus on laser equipment required for advanced packaging processes of high bandwidth memory (HBM).AP Systems is a subsidiary of APS Group, mainly focused on the fields of display and semiconductor laser processing equipment. It foc...

    01-15
    Zobacz tłumaczenie