Polski

Microcomb launches a simplified design for powerful lasers based on chips

792
2024-05-25 14:49:56
Zobacz tłumaczenie

Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.

Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty of creating frequency comb generators at the semiconductor level limits their application in everyday technologies such as handheld electronic devices.

What is a micro comb?
Optical frequency combs generate spectra. They are composed of several coherent beams that are evenly spaced and adjusted to different colors or frequencies. The resulting shape is similar to the teeth on a hair comb. Scientists have been developing micro combs, a miniaturized version of this technology that can be installed on small chips.

Although progress has been made in the design of micro comb prototypes, scientists have not yet created functional versions for practical applications. Some of these challenges include low power efficiency, limited controllability, slow mechanical response, and requirements for pre configuration of complex systems.

The simplified method has been developed by a group of scientists led by Professor Lin Qiang from the Institute of Optics and the Department of Electrical and Computer Engineering at the University of Rochester, who has developed a novel strategy to solve these problems in a single device.
The main author of this paper Lin's doctoral student Jingwei Ling claimed that previous methods often relied on injecting a single wavelength of laser into a nonlinear converter, which could then convert a single wavelength into multiple wavelengths to form an optical comb.

The simplicity of the "multi in one" micro comb laser reduces power requirements, lowers costs, and has excellent adjustability and turnkey operation.
The implementation of these micro comb lasers continues to pose challenges, especially in establishing manufacturing processes to generate such small components within the required manufacturing tolerance range. However, the researchers expect their equipment to be used in telecommunications systems and autonomous vehicle for light detection and ranging (LiDAR).

The Defense Advanced Research Projects Agency and the National Science Foundation of the United States provided support for this research.

Source: Laser Net

Powiązane rekomendacje
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    Zobacz tłumaczenie
  • NASA Completely Transforms Laser Communication and Space Weather Research

    NASA is a pioneer in space research, once again attracting the attention of the world with fascinating insights. In a recent press release, NASA announced plans to test revolutionary laser communication systems and study the interaction between Earth and space weather.A Great Leap in Space Communication: ILLUMA-TThe SpaceX 29 mission, scheduled for November 5th, will conduct research and technical...

    2023-10-23
    Zobacz tłumaczenie
  • UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

    According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 t...

    2023-10-09
    Zobacz tłumaczenie
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Zobacz tłumaczenie
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    Zobacz tłumaczenie