Polski

Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

434
2024-04-30 15:11:39
Zobacz tłumaczenie

Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.

Solar panels have always been praised for their recyclability. However, the thin plastic layer used in the manufacturing process poses challenges that hinder the effective recovery of valuable materials such as silicon and silver.

To solve this problem, NREL's research team has taken a different approach and proposed an innovative solution of directly implementing glass to glass welding in solar cells.

The core of this solution lies in utilizing infrared femtosecond laser technology. By precisely controlling the laser pulse, energy is focused on a specific area of the solar panel in an extremely short amount of time, forming a sturdy and durable glass to glass weld. It is worth mentioning that femtosecond laser technology has been widely applied in the field of medical ophthalmic surgery, such as cataract surgery, and its safety and reliability have been fully verified.

Through laser welding, the demand for plastic laminates in solar panels is completely eliminated, greatly simplifying the recycling process. After the lifespan of the battery panel, these modules made by laser welding can be easily broken, and the glass and metal wires inside can be smoothly recycled, while the silicon material can also be reused.

"Most recyclers generally believe that polymers are the main problem that hinders the recycling process. The emergence of our technology undoubtedly brings new possibilities for the recycling and utilization of solar panels," said David Young, senior scientist at the Efficient Crystal Photovoltaic Group of the NREL Department of Chemistry and Nanoscience.

This research result has been published in the IEEE Journal of Photovoltaics. The research team pointed out that laser welding technology has a wide range of applicability, not only suitable for silicon materials, but also can be used in combination with various materials such as perovskite and cadmium telluride. Due to the highly focused nature of the laser, the heat generated is limited to a very small range and will not cause damage to the battery material. Meanwhile, the strength of the welds inside the glass is equivalent to that of the glass itself, ensuring the long-term stability and durability of the module.

Young further explained, "As long as the glass itself is not cracked, there will be no problems with the weld seam. Moreover, due to the absence of polymers between the glass sheets, the hardness of the welding module has been significantly improved. Our research shows that by appropriately installing and modifying the embossing characteristics of rolled glass, the welding module can become sufficiently hard to meet the requirements of static load testing."

In the past, researchers have attempted to use nanosecond lasers and glass frit fillers for edge sealing, but the results were not ideal. The brittleness of the welds makes them unsuitable for outdoor module design. In contrast, the femtosecond laser welding technology developed by NREL achieves excellent sealing strength at extremely low cost, providing strong technical support for the recycling and utilization of solar panels.

This study is supported by the Durable Module Materials Alliance, which is committed to extending the lifespan of solar panels to 50 years or even longer. Through NREL's innovative laser technology, we are expected to achieve more efficient and environmentally friendly recycling of solar panels in the future, contributing to the sustainable development of renewable energy.

Source: OFweek

Powiązane rekomendacje
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Zobacz tłumaczenie
  • The new generation of special optical fibers is suitable for the application of quantum technology

    Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.The highly anticipat...

    2024-08-02
    Zobacz tłumaczenie
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    Zobacz tłumaczenie
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Zobacz tłumaczenie
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    Zobacz tłumaczenie