Polski

Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

915
2023-11-20 14:22:03
Zobacz tłumaczenie

Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.

Researchers at the University of Ljubljana use regular hand sanitizers or bubble mixtures suitable for children to create bubble lasers. By adding a small amount of fluorescent dye to the mixture, they can generate laser light from within the bubbles. Unlike traditional lasers that rely on mirrors for amplification, the internal volume of bubbles becomes a decisive factor in this new laser technology. This unique characteristic provides the necessary space for light to reflect back and forth, which is a key component of lasers.

The addition of fluorescent dyes enables bubbles to be used as amplifiers of light. When illuminated, the dye emits light, forming the basic components required for laser generation. Researchers use optical fibers and focusing lenses to guide external light onto bubbles. This triggers the bubble to generate its own laser.

An important aspect of this breakthrough is the extraordinary sensitivity of bubble lasers. They can detect pressure changes as small as 0.001% of atmospheric pressure. Even without thunderstorms generating electricity, they can sense the electric field in the atmosphere on clear days.

The application of this technology is extensive and exciting. The team creatively combined "micro ring lasers" together, opening up new possibilities for future development. The results of this discovery have sparked the interest and enthusiasm of experts in the field, who believe that it may lead to the emergence of various new applications.

FAQ:
Q: How do researchers convert soap bubbles into laser sensors?
Answer: Researchers added a small amount of fluorescent dye to ordinary hand sanitizers or bubble mixtures suitable for children, creating a medium for laser generation.

Q: How does a bubble laser work?
Answer: The internal volume of the bubble, coupled with the addition of fluorescent dyes, allows the bubble to serve as an amplifier of light. External light triggers bubbles to generate their own laser.

Q: What are the unique features of these bubble lasers?
Answer: Bubble lasers have unprecedented sensitivity and can detect pressure changes as low as 0.001% of atmospheric pressure. Even on sunny days, they can sense electric fields in the atmosphere without generating electricity from thunderstorms.

Q: What are the potential applications of bubble lasers?
Answer: This discovery opens the door to a wide range of new applications that need to be explored and developed.

Source: Laser Network

Powiązane rekomendacje
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    Zobacz tłumaczenie
  • Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

    The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.MEMS reflectors have gained widespread re...

    2024-03-07
    Zobacz tłumaczenie
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    Zobacz tłumaczenie
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    Zobacz tłumaczenie
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    Zobacz tłumaczenie