Polski

Heavyweight Natuer: New progress in the efficiency of perovskite battery modules! Professor Zhang Xiaohong from Suzhou University, an alliance unit, issued a document

662
2024-04-19 16:05:39
Zobacz tłumaczenie

Recently, Professor Zhang Xiaohong and Professor Peng Jun from the Functional Nanomaterials and Soft Materials Research Institute (FUNSOM) of Suzhou University, along with Professor Mohammad Khaja Nazeeruddin, Professor Paul J. Dyson, Professor Zhaofu Fei, and Professor Ding Yong from North China Electric Power University, collaborated to publish their research findings on Dopant additive synergy enhancement perovskite solar modules in the journal Nature. Peng Jun is the co first author of the paper, and Zhang Xiaohong is the co corresponding author of the paper.

Perovskite solar cells have become the most advanced new thin film photovoltaic technology due to their rapid improvement in efficiency and stability. However, compared with small laboratory scale batteries, the main bottlenecks hindering the commercialization of large-area perovskite battery modules are low efficiency, poor stability, and low repeatability.

In response to the key scientific issues mentioned above, Zhang Xiaohong, Peng Jun, and their collaborators recently adopted a strategy of using methylammonium chloride (MACl) as a dopant and 1,3-bis (cyanomethyl) imidazole chloride ([Bcmim] Cl) as a Lewis alkaline ionic liquid additive to significantly inhibit the degradation of perovskite precursor solutions, reduce MACl aggregation, and thus prepare high-quality perovskite films with oriented growth and excellent crystallization. A steady-state efficiency of 22.97% was achieved on a perovskite battery module with an aperture area of approximately 27.22cm2, successfully breaking the world record for steady-state efficiency of perovskite modules (National Photovoltaic Industry Metrology and Testing Center, NPVM certification). In addition, under working conditions of 65 degrees Celsius, after 1000 consecutive hours of light aging, the efficiency of the perovskite battery module obtained from the test still maintains 87.19% of the initial value, which fully demonstrates its excellent photothermal stability.

More importantly, this work reveals the intrinsic mechanism of the synergistic effect between dopants and additives, namely proton exchange and multi-point interactions, providing a practical and feasible solution for improving the performance of large-area perovskite battery modules.

Title of the article: Dopant-additive synergism enhances perovskite solar modules


Article website: https://www.nature.com/articles/s41586-024-07228-z

Ding, B., Ding, Y., Peng, J. et al. Dopant-additive synergism enhances perovskite solar modules. Nature 628, 299–305 (2024). https://doi.org/10.1038/s41586-024-07228-z

Source: Yangtze River Delta Laser

Powiązane rekomendacje
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    Zobacz tłumaczenie
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    Zobacz tłumaczenie
  • French laser giant's profits decline, laser radar business restructuring

    Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone b...

    2024-10-09
    Zobacz tłumaczenie
  • Research progress on machine learning for defect detection and prediction in laser cladding process

    It is reported that researchers from Foshan University, the Institute of Chemical Defense of the Academy of Military Sciences, the National Defense Technology Key Laboratory of Equipment Remanufacturing Technology of the Armored Forces Academy, and Chengdu State owned Jinjiang Machinery Factory have summarized and reported the latest progress of machine learning in defect detection and prediction ...

    01-17
    Zobacz tłumaczenie
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    Zobacz tłumaczenie