Polski

Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

959
2024-05-27 16:04:49
Zobacz tłumaczenie

Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.

Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using light.

Spin coherence refers to the ability of electron spins to retain quantum information over time. This discovery is of great significance because materials that can exhibit quantum properties under environmental conditions are very rare.

The research results published in the journal Natural Materials further confirm that the spin coherence available at room temperature is longer than researchers initially imagined. "The results indicate that once we write a quantum state onto the spin of these electrons, this information will be stored for~millionths of a second, making the system a very promising platform for quantum applications," said Carmem M. Gilardoni, co-author of the paper and postdoctoral researcher Rubicon at Cavendish Lab.

This may seem short, but interestingly, this system does not require special conditions - it can even store spin quantum states at room temperature and does not require a large magnet.

Characteristics of hexagonal boron nitride

Hexagonal boron nitride (hBN) is an ultra-thin material composed of stacked single atom thick layers, resembling a piece of paper. These layers are bonded together through intermolecular forces. But sometimes, there are "atomic defects" in these layers, similar to crystals in which molecules are trapped. These defects can absorb and emit light within the visible light range, and have clear optical transitions, and they can act as local traps for electrons. Due to these "atomic defects" in hBN, scientists can now study the behavior of these captured electrons. They can study spin properties, which allow electrons to interact with a magnetic field. What is truly exciting is that researchers can use the light in these defects to control and manipulate electron spin at room temperature.

This discovery paves the way for future technological applications, especially in sensing technology.

However, as this is the first time anyone has reported the spin coherence of the system, there is still a lot of research to be done before it matures enough for technical applications. Scientists are still studying how to make these defects better and more reliable. They are currently exploring to what extent we can extend spin storage time and whether we can optimize system and material parameters that are important for quantum technology applications, such as the stability of defects over time and the quality of light emitted by the defect.

Future Outlook and Conclusion

"The use of this system has emphasized the power of basic material research to us. As for the hBN system, as a field, we can use the excited state dynamics in other new material platforms for future quantum technology," said Dr. Hannah Stern, the first author of the paper, who conducted this research in the Cavendish Laboratory and is now a researcher at the Royal Society University and a lecturer at the University of Manchester.

In the future, researchers are considering further developing the system to explore many different directions from quantum sensors to secure communication.

"Every promising new system will broaden the toolkit of available materials, and every step towards this direction will drive the scalable implementation of quantum technology. These results confirm the prospects of layered materials achieving these goals," concluded Professor Mete Atat ü re, the head of the Cavendish Laboratory leading the project.

Source: Focus Media Network

Powiązane rekomendacje
  • Polyart Launches New Generation Polyart Laser Synthetic Paper

    Polyart has launched a new generation of Polyart laser printers, designed specifically for dry toner printing technology, with a completely improved coating formula and many exciting new advantages. These include reducing nationalism, moisture resistance, and better paper touch.Say hello to the good paper jogging on the printer output. More importantly, our new formula provides better scratch resi...

    2023-11-16
    Zobacz tłumaczenie
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    Zobacz tłumaczenie
  • Huashu High tech launches a large format 12 laser metal 3D printer at TCT Asia

    Chinese industrial 3D printer manufacturer Huashu High tech has launched the FS811M metal powder bed fusion series platform. The FS811M series has a construction volume of 840 x 840 x 960 millimeters and can be equipped with powerful 6, 8, 10, or 12 x 500 watt fiber lasers."As the latest member of the Huashu High tech Metal 3D printer product portfolio, FS811M originates from our joint innovation ...

    2024-05-13
    Zobacz tłumaczenie
  • Marvel Fusion received an additional € 50 million in Series B funding

    Recently, Marvel Fusion, which focuses on developing laser fusion energy systems, announced that the company has received an additional € 50 million in Series B funding. This latest investment is provided by EQT Venture Capital and Siemens Energy, and is also the first investment of the European Innovation Council (EIC) fund in fusion energy. In addition to the 63 million euros investment announce...

    04-08
    Zobacz tłumaczenie
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    Zobacz tłumaczenie