Polski

EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

366
2024-04-15 16:56:09
Zobacz tłumaczenie

The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerospace, electronics, and quantum computing.

The center is partially funded by the Regional Innovation Fund (RIF) in the UK and will be located at the Elite Manufacturing Skills Center (ECMS) at the University of Wolverhampton Springfield campus. It will serve as a center for knowledge exchange and research commercialization activities, providing services to local, regional, and global clients in various fields.

Desire for innovation in additive manufacturing
The additive manufacturing research group and its spin off company Additive Analytics at the University of Wolverhampton will lead materials and process development activities. Industries from automobiles and electronics to quantum computing and aerospace have expressed interest and emphasized the widespread applicability of copper additive manufacturing in thermal management and electrification due to its excellent thermal and electrical performance.

Although copper has ideal properties, laser processing it poses challenges and hinders its widespread adoption in additive manufacturing. The alliance's work aims to address this issue by utilizing cutting-edge technology, processes, and expertise to improve efficiency and reduce material waste.

Decades of expertise in additive manufacturing
Building on a 20-year partnership between the University of Wolverhampton and EOS, the new Center of Excellence will be supported by the adoption of AMCM 290 FLX, the next-generation laser powder bed fusion system capable of handling challenging materials such as copper. The AMCM 290 FLX is a customized EOS M 290 machine equipped with the most advanced nLIGHT beam shaping laser technology, high-temperature processing capabilities, and excellent oxygen control. This system enables enterprises to obtain the latest technologies and research results as early as possible and easily.

Professor Arun Arjunan, Director of ECMS and Engineering Innovation and Research at the University of Wolverhampton, said, "The establishment of the UK Centre for Excellence in Copper Additive Manufacturing marks an important milestone in the field of additive manufacturing, laying the foundation for innovation, sustainable development, and responsible manufacturing in the new era. Future projects will explore the integration of laser processing data, machine learning, and artificial intelligence technology to achieve efficient material and laser processing development."

EOS UK Sales Manager Nathan Rawlings added, "The UK manufacturing industry has always driven and embraced innovation. Additive manufacturing using materials such as copper brings huge benefits to product designers, but may require high demands from manufacturers. This new center of excellence will create and test processes that can reliably and consistently achieve material benefits in the manufacturing of components in the real world."

Source: Laser Net

Powiązane rekomendacje
  • Mazak will showcase high-speed fiber lasers on Tube 2024

    Yamazaki Mazak designed the FT-150 fiber laser tube processing machine for high-speed cutting of small and medium-sized diameter pipes, for use in Tube 2024. The machine tool will be controlled by a new type of pipe cutting CNC, which will be exhibited for the first time in Europe.Tube 2024 will be held from April 15th to 19th in Dusseldorf, Germany. Mazak will be exhibited at booth C17 in Hall 5....

    2024-03-16
    Zobacz tłumaczenie
  • Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

    Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".Digital holography is a tech...

    03-20
    Zobacz tłumaczenie
  • Chinese femtosecond laser company completes Pre-A round of financing

    Recently, Qingdao Free Trade Laser Technology Co., Ltd. successfully completed the Pre-A round of financing. This financing is led by Shandong Letong Science and Technology Industry Finance New Energy Industry Development Fund Center (Limited Partnership). This financing will focus on attracting professional talents, including optical engineering experts, algorithm engineers, etc., in order to a...

    2024-11-19
    Zobacz tłumaczenie
  • An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

    The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.The specific technique...

    2024-11-13
    Zobacz tłumaczenie
  • The laser direct writing lithography equipment market is expected to reach $160.25 million in 2029 with a compound growth rate of 5.21%

    Lithography machine is the key equipment for making high precision mask plate. Using a very fine laser beam, the highly precise line pattern is drawn on the mask substrate under the control of an extremely precise automatic control system.Laser direct writing is to use a laser beam with variable intensity to implement variable dose exposure on the resist material (photoresist) on the subst...

    2023-08-04
    Zobacz tłumaczenie