Polski

Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

489
2023-11-13 14:05:18
Zobacz tłumaczenie

This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.

A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit into microchips, which was published in the journal Science on the 9th local time.

MLL is a laser that generates powerful microwave light. Through microwave light, details of femtosecond and attosecond natural phenomena can now be observed, which were previously unseen.

By using these short laser pulses, microstructure that cannot be observed by an optical microscope can be identified. Imaging can be performed on the internal tissues of cancer lumps and the photosynthesis process in plant leaves. That's why MLL is also known as the foundation of modern accelerator research and technology.

However, so far, MML has only been developed in a cumbersome form, which limits its application in chip level nano optical devices that handle very little light in a very small space.

The research team has developed a "small mode locked laser" based on lithium niobate. The MML developed by the research team works at the nanoscale and measures much higher pulse energy and peak power compared to the MLL used in existing nano optical platforms.

The journal Science published the study on its cover and commented that the development of this technology will reduce the size of existing MLLs to the size of chips, stimulating the development of photonic based semiconductors that surpass existing semiconductor levels.

Photonic semiconductors use light instead of electricity and are considered the next generation technology because they can transmit data tens of times faster than existing devices while reducing power consumption. Especially, it is expected to be combined with artificial intelligence and high-performance sensors to achieve rapid information transmission and reception.

Source: Laser Network

Powiązane rekomendacje
  • Luxium Solutions completes strategic acquisition of Inrad Optics, a leading optical materials company

    Recently, Luxium Solutions, a high-performance crystal material supplier, announced the successful completion of its strategic acquisition of Inrad Optics, a leading optical materials company. This milestone transaction not only greatly enriches Luxium's innovative product matrix, but also injects valuable resources, operational wisdom, and capital drive into Inrad Optics. Both parties will work t...

    2024-07-20
    Zobacz tłumaczenie
  • CinIonic launches a new cinema screen specifically designed for laser theaters

    CinIonic announced the launch of a new cinema screen specifically designed for laser auditoriums. CinIonic Laser Screen 2.4 amplifies the power of laser projection by optimizing efficiency and enhancing screen presentation. This new screen is aimed at becoming the ideal companion for CinIonic Laser and is the first screen product in the CinIonic All Laser Solution portfolio.The CinIonic laser scre...

    2023-09-20
    Zobacz tłumaczenie
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    Zobacz tłumaczenie
  • Beijing Institute of Technology has made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals

    Recently, teachers and students from the Institute of Solid State Laser and Ultrafast Photonics at the School of Physics and Optoelectronic Engineering have made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals. The related research results are titled "Anisotropic carrier dynamics and laser fabricated luminosity patterns on oriented single cryst...

    2024-02-21
    Zobacz tłumaczenie
  • SILICON AUSTRIA LABS and EV GROUP Strengthen Cooperation in Optical Technology Research

    EV Group, a leading supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology, and semiconductor markets, and Silicon Austria Labs, a leading electronic systems research center in Austria, announced that SAL has received and installed multiple EVG lithography and photoresist processing systems in its MicroFab at the R&D cleanroom facility in Filach, Austria.These devices...

    2023-11-15
    Zobacz tłumaczenie