Polski

Optical properties of Xinggory Cy3.5 amine/NH2 labeling experiment

974
2024-03-29 15:03:26
Zobacz tłumaczenie

The optical properties of the Cy3.5 amine labeling experiment are an important reason for its application in biomarkers and fluorescence imaging. Cy3.5 is a fluorescent dye belonging to the Cyanine dye family, with high molar extinction coefficient and quantum yield, making it excellent in trace analysis and fluorescence imaging.

In the Cy3.5 amine labeling experiment, the dye covalently binds to specific functional groups on biomolecules (such as proteins, nucleic acids, etc.) through its amine group, thereby achieving the labeling of the target molecule. This labeling not only maintains the biological activity of the target molecule, but also endows it with fluorescence characteristics, making it convenient for qualitative and quantitative analysis in complex biological samples.

The maximum excitation wavelength of Cy3.5 dye is usually in the range of 550-570nm, while the maximum emission wavelength is in the range of 570-590nm. This gives Cy3.5 dye unique emission characteristics between green and red fluorescence, enabling good spectral separation from other commonly used fluorescent dyes such as GFP, FITC, etc., avoiding signal interference.

In addition to fluorescent signals with high sensitivity and specificity, Cy3.5 dyes also exhibit good photostability. Under continuous laser irradiation, its fluorescence signal can remain relatively stable and is not prone to bleaching or quenching. This makes Cy3.5 dye have better application prospects in long-term fluorescence imaging experiments.

In summary, the optical properties of the Cy3.5 amine labeling experiment make it a tool in the fields of biomarkers and fluorescence imaging. Its high sensitivity, specificity, good spectral separation, and excellent photostability make this dye valuable in biomedical research.

Source: Sohu

Powiązane rekomendacje
  • Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

    The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or ...

    2024-08-05
    Zobacz tłumaczenie
  • The globalization of three-color laser technology will be further accelerated

    Recently, the IFA2023 Consumer Electronics Show in Berlin, Germany opened, Hisense exhibited "three-color laser projection family bucket" attracted the attention of media and tourists from all over the world.Since Hisense's young fashion brand Vidda launched a series of three-color laser projection, its accumulation based on three-color laser technology is competing globally and has become a...

    2023-09-04
    Zobacz tłumaczenie
  • Fraunhofer ILT utilizes short pulse lasers to achieve high-speed optical stamping

    At the Fraunhofer Institute for Laser Technology (ILT), researchers in collaboration with RWTH Aachen University – Chair for Technology of Optical Systems (RWTH-TOS) are using a spatial light modulator (SLM) to shape the beam of an ultrashort pulse laser precisely into the desired pattern to apply to the surface of a workpiece.The developers say that this approach “significantly speeds up processi...

    09-25
    Zobacz tłumaczenie
  • The advanced laser welding machine has been successfully debugged, helping to make a leap in high-performance battery manufacturing!

    Alexander Battery Technologies, a leading company in the field of battery manufacturing, recently announced that it has successfully debugged the world's most advanced laser welding machine, an innovative initiative that will greatly drive the company's production process.Alexander Battery Technologies, as a company dedicated to supporting original equipment manufacturers in bringing lithium-ion b...

    2024-04-28
    Zobacz tłumaczenie
  • The Glory of Laser and the Odyssey of "Deep Technology"

    The British engineering and construction company Metz Group has a delegation in Spain to be responsible for the expansion and renovation of the central laser facility at Rutherford Appleton Laboratory near Oxford. More commonly, the construction of the powerful laser Vulcan 20-20 has just been obtained, with a delivery date of 2029.It will emit a main excitation beam that is billions of times larg...

    2023-12-09
    Zobacz tłumaczenie