Polski

Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

1037
2024-02-19 15:31:14
Zobacz tłumaczenie

A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.

Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use and scalability. The femtosecond laser based technology currently used for printing complex 2D and 3D structures is slow and expensive, and often unaffordable for small and medium-sized batch manufacturing applications. These high-intensity femtosecond lasers can overcome optical diffraction limits, but they are costly. The current technology is still limited by the slow sequential printer system. An alternative light based printing system is needed, which can eliminate expensive lasers while achieving precise and detailed nanoscale printing of polymers and metals.

The potential applications of cost-effective nanoprinting include nanoscale patterned metal films, which are important components in nanodevices and applications, such as electrical interconnections in high-density printed electronics, plasma based metamaterials for biosensing and optical modulation, and microelectromechanical systems.

The SLP system developed by Georgia Institute of Technology provides several advantages for nanoscale printing processes: lower cost, higher speed, and finer resolution. The light source is a type of super light-emitting diode, which is 100 times cheaper than the currently used lasers, thereby reducing the overall printing cost by 10-50 times. By utilizing the specific effects of superluminescent light projection, sharp edge images with minimal speckle patterns can be created, resulting in high-resolution images and structures on polymer and metal based films.

Moreover, by implementing a parallel writing mechanism, the system significantly improves throughput speed, which is 100 times faster than existing metal printing methods and 4 times faster than existing polymer printing methods. These advantages create an easily scalable system for various industrial needs and make nanoscale printing a viable resource for a larger manufacturing audience.

The proposed solution has several advantages. Firstly, it is cost-effective, utilizing existing SLEDs that are much cheaper than commonly used femtosecond lasers, thereby greatly reducing the cost of nanoscale printing. Secondly, due to its parallel writing system, it has higher speed and can achieve faster throughput, especially in metal printing. Compared with existing technologies, it is at least 100 times faster, and polymer printing is at least 4 times faster. Thirdly, unlike other nanoscale printing methods, it provides flexibility by adapting to polymer and metal printing. In addition, it also has scalability, lower lighting costs, higher printing speeds, and the potential for layer stacking to create 3D structures, making it suitable for different manufacturing environments. Finally, due to the use of high numerical aperture oil immersed lenses with superluminescent light, it provides excellent resolution, thereby enhancing oblique light capture and improving printing resolution.

The potential commercial applications of this solution are diverse and have broad prospects. They include micro optical devices for quantum devices, which can fundamentally change various fields by improving the performance of quantum technology. The application of plane optics and photonic quantum devices in photonics provides new avenues for advanced optical systems. In addition, this solution may help to produce printed structures for photoconductive chips, which are key components of technologies such as laser radar systems used in autonomous vehicle, thus contributing to the progress of autonomous vehicle. In addition, this technology can also be used to develop microfluidic chips and micro robots for biomedical and drug delivery applications, thereby achieving precise and efficient delivery mechanisms at the microscale. In addition, it has broad prospects in the field of printed electronics, helping to manufacture electronic components with complex designs and functions. Finally, printed batteries represent another potential application, providing customizable and compact power solutions for various devices and systems. Overall, the versatility of this solution has opened up numerous business opportunities for various industries.

Source: Laser Net

Powiązane rekomendacje
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    Zobacz tłumaczenie
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    Zobacz tłumaczenie
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    Zobacz tłumaczenie
  • 2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics

    2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics.The company plans to showcase this technology at the large-scale technology trade show CES 2024 in Las Vegas next week.This company, headquartered in Cambridge, Massachusetts, stated that it has created the world's leading high-resolution fisheye sensor based on optical superlens technology. This technol...

    2024-01-05
    Zobacz tłumaczenie
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    Zobacz tłumaczenie