Polski

New laser technology unlocks deuterium release in aluminum layers

375
2023-11-25 13:55:47
Zobacz tłumaczenie

In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.
A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was published in the Journal of Spectroscopy Part B: Atomic Spectroscopy.

The focus of this study is on the formation of 1 on substrates with different surface characteristics using high-power pulsed magnetron sputtering technology μ M aluminum layer. The key aspect is the software controlled laser pulse energy operation, which can achieve a seamless transition from layer ablation to layer desorption.

The research team evaluated the amount of deuterium released at the end of the laser induction process using quadrupole mass spectrometry. They compared it with the results of thermal desorption spectroscopy, and the results showed that the analyzed sample contained approximately 2.6 ×  ten ²¹  D at/m ²  Deuterium. Mass spectrometry data shows that 85% and 9% are released through LIA and LID, respectively.

The research team can also determine the boundary between ablation and desorption processes by mathematically modeling the data. The analysis of the aluminum layer surface combined with the substrate surface provides important insights into the mechanism of controlling deuterium atom release through these laser-induced processes.

However, the biggest and most important conclusion is that the research team can confirm their findings. By using optical emission spectroscopy, the research team confirmed that the substrate interface had been reached during the LIA-QMS analysis.

From advancing our understanding of materials science to potentially revolutionizing energy applications, these newly launched laser technologies have the potential to manipulate the atomic structure within materials. This has opened up a path for further research and promoted innovation in energy production and material engineering. This study demonstrates the potential of laser technology in manipulating atomic behavior within materials.

Source: Laser Net

Powiązane rekomendacje
  • Statsndata predicts that the light detection and ranging market will experience vigorous development globally in 2029

    The Light Detection and Ranging (LiDAR) market embodies the technology of remote sensing, surveying, and the use of laser pulses to measure distance and generate detailed three-dimensional models of objects, terrain, and environment.The LiDAR system emits a laser beam and measures the time required for the light to return to the surface, creating accurate and high-resolution digital representation...

    2023-08-31
    Zobacz tłumaczenie
  • Lockheed Martin announces expansion of 16000 square feet 3D printing center

    Recently, US military industry giant Lockheed Martin announced that it will significantly increase its additive manufacturing capabilities and expand its factory in Texas. The expansion project includes approximately 16000 square feet of dedicated space for 3D printing technology, and the addition of some of the largest large format multi laser printers in the space (it is worth noting that Lockhe...

    2024-12-02
    Zobacz tłumaczenie
  • How to choose between continuous and pulsed fiber lasers?

    Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous ...

    2023-12-20
    Zobacz tłumaczenie
  • Han's Laser wins multiple lithium battery projects

    Recently, relevant information shows that Shenzhen Han's Lithium Battery Intelligent Equipment Co., Ltd. (referred to as Han's Lithium Battery) has won the bid for the solid-state battery pilot line testing section process equipment project and solid-state battery pilot line assembly section process equipment project of Dongfeng Hongtai Holdings Group Co., Ltd. The winning bid amounts are 9.3847 m...

    2024-09-28
    Zobacz tłumaczenie
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    Zobacz tłumaczenie