Polski

SILICON AUSTRIA LABS and EV GROUP Strengthen Cooperation in Optical Technology Research

876
2023-11-15 14:06:51
Zobacz tłumaczenie

EV Group, a leading supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology, and semiconductor markets, and Silicon Austria Labs, a leading electronic systems research center in Austria, announced that SAL has received and installed multiple EVG lithography and photoresist processing systems in its MicroFab at the R&D cleanroom facility in Filach, Austria.

These devices are part of the strengthened cooperation between the two companies, aimed at accelerating the development and deployment of advanced optical technologies for heterogeneous integrated applications, including wafer level optical devices for micro cameras and mirrors, diffractive optical devices, and automotive optical devices for autonomous driving and automotive lighting.

The newly installed EVG system includes LITHOSCALE maskless exposure system, EVG7300 automated SmartNIL nanoimprinting and wafer level optical system, as well as multiple complementary photoresist processing systems. These systems incorporate multiple existing EVG bonding, mask alignment, and lithography systems from SAL, including the first installation of the next-generation 200mm version of the EVG150 automatic photoresist processing system. Compared to the previous generation platform, this system provides higher throughput, greater flexibility, and smaller tool footprint.

In addition, SAL has been working closely with the technical development and application engineering teams at EVG headquarters, including the NILPhotonics capability center, to leverage EVG's equipment and process knowledge to develop processes that can be transferred and expanded to mass production.

Dr. Mohssen Moridi, Director of Microsystem Research at Silicon Australia Labs, stated: We have recently been immersed in a series of cutting-edge research and development projects, involving metaoptics, integrated photonics, and MEMS, which require the use of advanced lithography and bonding tools. Through our valuable collaboration with EVG, we have obtained tools with excellent reliability and accuracy, which are crucial for successful research and development work. It is worth noting that the EVG7300 SmartNIL system has become a key tool that can be used on a large scale for emerging photonics and MEMS devices Produce nanostructures. Its applications extend to multiple fields such as intelligent lighting systems, AR/VR, automotive optics, telecommunications, and quantum technology.

SAL was one of the first customers to obtain the new EVG7300 system, which is EVG's most advanced solution that combines multiple UV based process capabilities, such as nanoimprint lithography, lens forming, and lens stacking. The EVG7300 is specifically developed to meet the advanced research and production needs of various emerging applications, involving micro and nano patterns as well as functional layer stacking.

EVG's revolutionary LITHOSCALE maskless exposure system meets the lithography needs of markets and applications that require high flexibility or product changes. It solves traditional bottlenecks by combining powerful digital processing capabilities, high structured resolution, and throughput scalability. It is very suitable for rapid prototyping design, providing fast turnaround and development cycle time.

Thomas Glinner, Technical Director of EV Group, stated: Silicon Australia Labs is a leading research center in the field of optical miniaturization and heterogeneous integration, and a strategic partner of EV Group. The latest shipment and installation of our advanced lithography and photoresist processing systems further strengthen our partnership and support SAIC's ability to develop future key technologies and apply our leading solutions to practical industrial applications.

Source: Laser Network

Powiązane rekomendacje
  • TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

    TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.This upgrade ...

    2023-08-21
    Zobacz tłumaczenie
  • New nanophotonic circuits demonstrate the potential of quantum networks

    The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue...

    2024-08-14
    Zobacz tłumaczenie
  • Professor Wu Dong's team at the University of Science and Technology of China created a "dancing microrobot" using femtosecond laser composite materials.

    It was learned from the University of Science and Technology of China that the team of Professor Wu Dong of the Micro and Nano Engineering Laboratory of the school proposed a femtosecond laser two-in-one multi-material processing strategy, manufactured a micromechanical joint composed of temperature-sensitive hydrogel and metal nanoparticles, and then developed a multi-joint humanoid micromachine ...

    2023-08-11
    Zobacz tłumaczenie
  • Farnell provides its own branded 3D printing consumables

    Farnell stated that it will store a series of 3D printed filaments under its Multicomp Pro brand, targeting "design engineers, creators, and hobbyists."."With the growing interest and demand for 3D printing, we are pleased to provide our customers with a diverse range of 3D printer consumables aimed at meeting the quality standards required by engineers," added Steve Jagger Marsh, the company's pr...

    2024-06-03
    Zobacz tłumaczenie
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    Zobacz tłumaczenie